Higher Grade Paper 2 2010/2011

Marking Scheme

	Give 1 mark for each •	Illustration(s) for awarding each mark
1(a)	ans: $3y = x + 15$ (3 marks) • ¹ finds midpoint of BC • ² finds gradient of AM • ³ subs into equation of straight line	• 1 midpoint BC = (9, 8) • 2 $m_{AM} = \frac{1}{3}$ • 3 $y - 8 = \frac{1}{3}(x - 9)$ or $y = \frac{1}{3}x + 5$
(b)	ans: $A(-9, 2)$ (3 marks)•1 knows to use system of equations•2 solves for x and y•3 states coordinates of E	• ¹ evidence • ² $x = -9; y = 2$ • ³ $A(-9, 2)$
(c)	ans: $y = 5x - 17$ (3 marks)•1 finds gradient of AC•2 finds gradient of altitude•3 subs into equation of straight line	• $m_{AB} = -\frac{1}{5}$ • $m_{alt} = 5$ • $y - 18 = 5(x - 7)$
2(a)	ans: $k = 6$ (3 marks) • ¹ knows to use synthetic division • ² uses synthetic division correctly	• ¹ evidence 1 3 k 4 -13 • ² 3 $k+3$ $k+7$ 3 $k+3$ $k+7$ $k-6$
(b)	• ³ equates remainder to 0 and solves for k ans: $x = -\frac{2}{3}$ (4 marks) • ¹ finds derivative • ² makes derivative equal to 0 for SP • ³ factorises • ⁴ solves for x	• ³ $k-6=0; k=6$ • ¹ $\frac{dy}{dx} = 9x^2 + 12x + 4$ • ² $9x^2 + 12x + 4 = 0$ at SP • ³ $(3x+2)(3x+2) = 0$ • ⁴ $x = -\frac{2}{3}$
		~

	Give 1 mark for each •	Illustration(s) for awarding each mark
3(a)	ans: $a = 9p^2$; $b = -6p$; $c = \frac{1}{2}p$ (4 marks)	
	 ¹ knows to substitute ² substitutes correctly 	• ¹ evidence of sub. one function into other • ² $3p[x(3px-2)] + \frac{1}{2}p$
	 ³ simplifies to correct form ⁴ states values of <i>a</i>, <i>b</i> and <i>c</i> 	• ³ $3p(3px^2 - 2x) + \frac{1}{2}p; 9p^2x^2 - 6px + \frac{1}{2}p$ • ⁴ $a = 9p^2; b = -6p; c = \frac{1}{2}p$
(b)	ans: $p = 2$ (3 marks)	
	 ¹ knows discriminant = 0 ² substitutes values and simplifies ³ solves and discards 	• $b^{2} - 4ac = 0$ [stated or implied] • $(-6p)^{2} - 4 \times 9p^{2} \times \frac{1}{2}p = 0; 36p^{2} - 18p^{3} = 0$ • $18p^{2}(2-p) = 0; p = 2$
4(a)	ans: P(3, 12); Q(4, 0) (5 marks)	
	 for P: knows to equates functions finds <i>x</i> - coord. of P for Q: equates function to 0 solves for <i>x</i> states coords. of P and Q 	• $x^{3} - 11x^{2} + 28x = 4x$ • $x = 3$ • $x^{3} - 11x^{2} + 28x = 0$ • $x = 4$ • $P(3, 12); Q(4, 0)$
(b)	ans: $24\frac{1}{12}$ units ² (6 marks)	
	 ¹ splits area into 2 sections ² finds area of triangle 	• evidence of area of triangle plus integral • $\frac{1}{2}(3 \times 12) = 18$ units ²
	\bullet^3 sets up integral for other area	• ³ $\int_{3}^{4} x^{3} - 11x^{2} + 28x dx$
	• ⁴ finds integral	• ⁴ $\left[\frac{x^4}{4} - \frac{11x^3}{3} + 14x^2\right]_3^4$
	• ⁵ subs values	• $\left[\frac{4^4}{4} - \frac{11(4)^3}{3} + 14(4)^2\right] - \left[\frac{3^4}{4} - 11(3)^3 + 14(3)^2\right]$
	\bullet^6 evaluates and adds to area of triangle	• $6 \frac{1}{12} + 18 = 24\frac{1}{12}$ units ²
	Alternative solution is	given on next nego
	Alternative solution is	given on next page
© Peo	asys 2010	

	Give 1 mark for each •	Illustration(s) for awarding each mark
or(b)	ans: $24\frac{1}{12}$ units ² (6 marks)	
	• ¹ knows to find area under curve	• $\int_0^4 x^3 - 11x^2 + 28x \ dx$
	• ² finds integral	• ² $\left[\frac{x^4}{4} - \frac{11x^3}{3} + 14x^2\right]_0^4$
	\bullet^3 subs values	• ³ $\left[\frac{4^4}{4} - \frac{11(4)^3}{3} + 14(4)^2\right] = 0$
	• ⁴ evaluates	• ⁴ 160/3
	• ⁵ finds unshaded area	• ⁵ $\left[\frac{x^4}{4} - \frac{11x^3}{3} + 12x^2\right]_0^3 = \frac{117}{4}$
	• ⁶ subtracts to answer	• ⁶ $\frac{160}{3} - \frac{117}{4} = 24 \frac{1}{12} \text{ units}^2$
5(a)	ans: $p = 6$ (2 marks)	
	• ¹ subs into equation of circle • ² solves for p	• ¹ $p^2 + 144 - 192 + 12 = 0$ • ² $p^2 = 36; p = 6$
(b)	ans: (0, – 8) (1 mark)	
	\bullet^1 states centre of circle	• 1 (0, -8)
(c)	ans: $2y = 3x - 42$ (4 marks)	
	• ¹ finds gradient of ST	$\bullet^1 m_{\rm ST} = -\frac{2}{3}$
	\bullet^2 finds gradient of tangent	$\bullet^2 m_{\rm tan} = \frac{3}{2}$
	• ³ subs into equation of straight line	• $y+12 = \frac{3}{2}(x-6)$ [or equivalent]
	• ⁴ finds coords of point R	• ⁴ $3x - 42 = 0; x = 14 (14, 0)$
(d)	ans: $(x-7)^2 + (y+4)^2 = 65$ (3 marks)	
	• $\frac{1}{2}$ finds midpoint of SR (centre of circle)	• 1 centre of circle $(7, -4)$
	 ² finds radius ³ subs into equation of circle 	• ² $\sqrt{65}$ • ³ $(x-7)^2 + (y+4)^2 = 42$
6	ans: $a = 2$ (5 marks)	(x + i) + (y + i) = 12
U		
	• knows to make derivative equal to 0	• ¹ C' = 0 [stated or implied] ² 16200 = 1 450
	\bullet^2 prepares to differentiate	• ² $C = = -\frac{16200}{9}a^{-1} + 450a$
	\bullet^3 finds derivative	• ³ C' = $-\frac{16200}{9a^2} + 450 = 0$
	• ⁴ attempts to solve for a	• ⁴ $-\frac{16200}{9a^2} = -450; 4050a^2 = 16200$
	• ⁵ solves for a	• $a^2 = 4; a = 2$
© Pen	asys 2010	

	Give 1 mark for each •	Illustration(s) for awarding each mark
7(a)	ans: $p = -\frac{1}{4}; q = -\frac{17}{16}$ (2 marks)	
	 ¹ completes square ² states values of <i>p</i> and <i>q</i> 	• $(\sin \theta - \frac{1}{4})^2 - \frac{17}{16}$ • $p = -\frac{1}{4}; q = -\frac{17}{16}$
(b)	ans: 0.25 radians(3 marks) \bullet^1 states minimum value \bullet^2 attempts to find θ \bullet^3 finds value of θ	• minimum value = $-\frac{17}{16}$ • $\sin \theta = \frac{1}{4}$ • $\theta = 0.25$ radians
8(a)	ans: $f(x) = x^3 + \frac{10}{x} - 10$ (5 marks) • ¹ knows to integrate • ² integrates first term correctly • ³ 2 nd term integrated correctly + C • ⁴ equates from additional information • ⁵ solves for <i>C</i> and states $f(x) = \dots$	• $f(x) = \int f'(x) dx$ [stated or implied] • $\frac{1}{3} = \frac{3x^3}{3} \dots \frac{10x^{-1}}{-1} + C$ • $\frac{1}{3} = 2^3 + \frac{10}{2} + C$ • $C = -10$ and $f(x) = x^3 + \frac{10}{x} - 10$
(b)	ans: $f(1) = 1$ (1 mark) • ¹ calculates to answer	• ¹ $f(1) = 1^3 + \frac{10}{1} - 10 = 1$
		Total: 60 marks