	Give 1 mark for each -	Illustration(s) for awarding each mark
1(a) (b) (c)	ans: $3 y=x+15$ (3 marks) - finds midpoint of BC - 2 finds gradient of AM -3 subs into equation of straight line ans: $\quad \mathbf{A}(-9,2)$ (3 marks) - ${ }^{1}$ knows to use system of equations - ${ }^{2}$ solves for x and y - ${ }^{3}$ states coordinates of E ans: $y=5 x-17$ (3 marks) - ${ }^{1}$ finds gradient of AC ${ }^{-2}$ finds gradient of altitude -3 subs into equation of straight line	- ${ }^{1}$ midpoint $\mathrm{BC}=(9,8)$ - $m_{\mathrm{AM}}=\frac{1}{3}$ - $3-8=\frac{1}{3}(x-9)$ or $y=\frac{1}{3} x+5$ - ${ }^{1}$ evidence - ${ }^{2} x=-9 ; y=2$ - ${ }^{3} \mathrm{~A}(-9,2)$ - $m_{\mathrm{AB}}=-\frac{1}{5}$ -2 $m_{\text {alt }}=5$ -3 $y-18=5(x-7)$
2(a)	ans: $k=6$ - ${ }^{1}$ knows to use synthetic division - ${ }^{2}$ uses synthetic division correctly -3 equates remainder to 0 and solves for k ans: $x=-\frac{2}{3}$ (4 marks) - ${ }^{1}$ finds derivative - ${ }^{2}$ makes derivative equal to 0 for SP - ${ }^{3}$ factorises - ${ }^{4} \quad$ solves for x	- ${ }^{1}$ evidence - ${ }^{3} k-6=0 ; k=6$ -1 $\frac{d y}{d x}=9 x^{2}+12 x+4$ - ${ }^{2} 9 x^{2}+12 x+4=0$ at SP - ${ }^{3}(3 x+2)(3 x+2)=0$ -4 $x=-\frac{2}{3}$

\begin{tabular}{|c|c|c|}
\hline \& Give 1 mark for each \& Illustration(s) for awarding each mark \\
\hline 3(a)

(b) \& \begin{tabular}{l}
ans: $\quad a=9 p^{2} ; b=-6 p ; c=1 / 2 p$ \\
(4 marks) \\
- ${ }^{1}$ knows to substitute \\
- ${ }^{2}$ substitutes correctly \\
- ${ }^{3}$ simplifies to correct form \\
- ${ }^{4}$ states values of a, b and c \\
ans: $p=2$ \\
(3 marks) \\
- ${ }^{1}$ knows discriminant $=0$ \\
- ${ }^{2}$ substitutes values and simplifies \\
- ${ }^{3}$ solves and discards

 \&

- ${ }^{1}$ evidence of sub. one function into other \\
- ${ }^{2} 3 p[x(3 p x-2)]+\frac{1}{2} p$ \\
- $3 p\left(3 p x^{2}-2 x\right)+\frac{1}{2} p ; 9 p^{2} x^{2}-6 p x+\frac{1}{2} p$ \\
- ${ }^{4} \quad a=9 p^{2} ; b=-6 p ; c=1 / 2 p$ \\
- ${ }^{1} b^{2}-4 a c=0$ [stated or implied] \\
- $2(-6 p)^{2}-4 \times 9 p^{2} \times \frac{1}{2} p=0 ; 36 p^{2}-18 p^{3}=0$ \\
- ${ }^{3} 18 p^{2}(2-p)=0 ; p=2$
\end{tabular} \\

\hline 4(a)
(b)

© Peq \& \begin{tabular}{l}
ans: $\quad \mathbf{P}(3,12) ; Q(4,0)$ \\
- ${ }^{1}$ for P : knows to equates functions \\
- ${ }^{2}$ finds x - coord. of P \\
- ${ }^{3}$ for Q : equates function to 0 \\
- ${ }^{4}$ solves for x \\
- 5 states coords. of P and Q \\
ans: $24 \frac{1}{12}$ units 2 \\
(6 marks) \\
- ${ }^{1}$ splits area into 2 sections \\
- ${ }^{2}$ finds area of triangle \\
- 3 sets up integral for other area \\
-4 finds integral \\
- ${ }^{5}$ subs values \\
- ${ }^{6}$ evaluates and adds to area of triangle \\
Alternative solution is

 \&

- $x^{3}-11 x^{2}+28 x=4 x$ \\
- ${ }^{2} x=3$ \\
- $x^{3}-11 x^{2}+28 x=0$ \\
- ${ }^{4} x=4$ \\
- $5(3,12) ; \mathrm{Q}(4,0)$ \\
- ${ }^{1}$ evidence of area of triangle plus integral \\
- ${ }^{2} \quad 1 / 2(3 \times 12)=18$ units 2 \\
- $\int_{3}^{4} x^{3}-11 x^{2}+28 x d x$ \\
- $4\left[\frac{x^{4}}{4}-\frac{11 x^{3}}{3}+14 x^{2}\right]_{3}^{4}$ \\
- $5\left[\frac{4^{4}}{4}-\frac{11(4)^{3}}{3}+14(4)^{2}\right]-\left[\frac{3^{4}}{4}-11(3)^{3}+14(3)^{2}\right]$ \\
- $6 \quad 6 \frac{1}{12}+18=24 \frac{1}{12}$ units 2 \\
given on next page
\end{tabular} \\

\hline
\end{tabular}

	Give 1 mark for each -	Illustration(s) for awarding each mark
or(b)	ans: $\quad 24 \frac{1}{12}$ units 2 (6 marks) - ${ }^{1}$ knows to find area under curve -2 finds integral -3 subs values - ${ }^{4}$ evaluates - 5 finds unshaded area - ${ }^{6}$ subtracts to answer	- $\int_{0}^{4} x^{3}-11 x^{2}+28 x d x$ - $2\left[\frac{x^{4}}{4}-\frac{11 x^{3}}{3}+14 x^{2}\right]_{0}^{4}$ - $\left[\frac{4^{4}}{4}-\frac{11(4)^{3}}{3}+14(4)^{2}\right]-0$ - ${ }^{4} \quad 160 / 3$ - $5\left[\frac{x^{4}}{4}-\frac{11 x^{3}}{3}+12 x^{2}\right]_{0}^{3}=\frac{117}{4}$ - $6 \quad \frac{160}{3}-\frac{117}{4}=24 \frac{1}{12}$ units 2
5(a) (b) (c) (d)	ans: $p=6$ - ${ }^{1}$ subs into equation of circle - ${ }^{2}$ solves for p ans: $(0,-8)$ (1 mark) - ${ }^{1}$ states centre of circle ans: $2 y=3 x-42$ (4 marks) - ${ }^{1}$ finds gradient of ST -2 finds gradient of tangent -3 subs into equation of straight line - ${ }^{4}$ finds coords of point R ans: $(x-7)^{2}+(y+4)^{2}=65$ (3 marks) - ${ }^{1}$ finds midpoint of SR (centre of circle) - ${ }^{2}$ finds radius - ${ }^{3}$ subs into equation of circle	- $p^{2}+144-192+12=0$ - ${ }^{2} p^{2}=36 ; p=6$ - ${ }^{1}(0,-8)$ - ${ }^{1} m_{\mathrm{ST}}=-2 / 3$ - ${ }^{2} m_{\text {tan }}=\frac{3}{2}$ - $y+12=\frac{3}{2}(x-6)$ [or equivalent] - $43 x-42=0 ; x=14(14,0)$ - ${ }^{1}$ centre of circle $(7,-4)$ - ${ }^{2} \quad \sqrt{6} 5$ - $\quad(x-7)^{2}+(y+4)^{2}=42$
6	ans: $\quad a=2$ (5 marks) - ${ }^{1}$ knows to make derivative equal to 0 - 2 prepares to differentiate - 3 finds derivative - ${ }^{4}$ attempts to solve for a - ${ }^{5}$ solves for a	- ${ }^{1} \mathrm{C}^{\prime}=0$ [stated or implied] - $2 \mathrm{C}=-\frac{16200}{9} a^{-1}+450 a$ - $\mathrm{C}^{\prime}=-\frac{16200}{9 a^{2}}+450=0$ - ${ }^{4}-\frac{16200}{9 a^{2}}=-450 ; 4050 a^{2}=16200$ - ${ }^{5} \quad a^{2}=4 ; a=2$

\begin{tabular}{|c|c|c|}
\hline \& Give 1 mark for each - \& Illustration(s) for awarding each mark \\
\hline \begin{tabular}{l}
7(a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
ans: \(\quad p=-\frac{1}{4} ; q=-\frac{17}{16}\) \\
(2 marks) \\
- \({ }^{1}\) completes square \\
- \({ }^{2} \quad\) states values of \(p\) and \(q\) \\
ans: \(\mathbf{0 . 2 5}\) radians \\
(3 marks) \\
- \({ }^{1}\) states minimum value \\
- \({ }^{2}\) attempts to find \(\theta\) \\
- 3 finds value of \(\theta\)
\end{tabular} \& \begin{tabular}{l}
- \(\quad\left(\sin \theta-\frac{1}{4}\right)^{2}-\frac{17}{16}\) \\
- \(2 \quad p=-\frac{1}{4} ; q=-\frac{17}{16}\) \\
- \(\quad\) minimum value \(=-\frac{17}{16}\) \\
- \(\quad \sin \theta=\frac{1}{4}\) \\
- \({ }^{3} \theta=0.25\) radians
\end{tabular} \\
\hline 8(a)

(b) \& \begin{tabular}{l}
ans: $\quad f(x)=x^{3}+\frac{10}{x}-10$ \\
(5 marks) \\
- ${ }^{1}$ knows to integrate \\
- ${ }^{2}$ integrates first term correctly \\
- $2^{\text {nd }}$ term integrated correctly $+C$ \\
- ${ }^{4}$ equates from additional information \\
- 5 solves for C and states $f(x)=\ldots$. \\
ans: $\quad f(1)=1$ \\
(1 mark) \\
- ${ }^{1}$ calculates to answer

 \&

- $\quad f(x)=\int f^{\prime}(x) d x \quad$ [stated or implied] \\
- $2=\frac{3 x^{3}}{3}$ \\
$\bullet^{3}=\ldots \ldots \ldots .-\frac{10 x^{-1}}{-1}+C$ \\
- $4=2^{3}+\frac{10}{2}+C$ \\
-5 $\quad \therefore C=-10$ and $f(x)=x^{3}+\frac{10}{x}-10$ \\
- $\quad f(1)=1^{3}+\frac{10}{1}-10=1$
\end{tabular} \\

\hline \& \& Total: 60 marks \\
\hline
\end{tabular}

