Higher Grade Paper 2 2009/2010

Marking Scheme

	Give 1 mark for each •	Illustration(s) for awarding each mark
1(a)	ans: $a = 1; b = 4, c = -29$ (4 marks) • ¹ finds gradient of BD • ² finds gradient of AC • ³ subs into $y - b = m(x - a)$ and rearranges • ⁴ states values of <i>a</i> , <i>b</i> and <i>c</i>	• $m_{BD} = 4$ [from equation] • $m_{AC} = -\frac{1}{4}$ • $y - 8 = -\frac{1}{4}(x+3); x + 4y - 29 = 0$ • $a = 1; b = 4, c = -29$
(b)	ans: $E(5, 6)$ (3 marks)• 1 knows to use system of equations• 2 solves for x and y• 3 states coordinates of E	• 1 evidence of equating one variable • 2 $x = 5; y = 6$ • 3 $E(5, 6)$
(c)	ans: C(13, 4) (2 marks)	 evidence of 'stepping out' or other method C(13, 4)
2(a) (b)	ans:proof(3 marks) \cdot^1 knows to substitute \cdot^2 substitutes correctly \cdot^3 clearly simplifies to answerans: $p = 2$ (4 marks) \cdot^1 substitute for x \cdot^1 substitute for x \cdot^2 knows to multiply by conjugate surd \cdot^3 multiplies and simplifies \cdot^4 states value of p	• 1 evidence of sub. one function in other • 2 $f\left(\frac{1}{x-1}\right) = \frac{4}{x-1} + 1$ • 3 $\frac{4+x-1}{x-1} = \frac{x+3}{x-1}$ • 1 $\frac{\sqrt{5}+3}{\sqrt{5}-1}$ • 2 $\frac{\sqrt{5}+3}{\sqrt{5}-1} \times \frac{\sqrt{5}+1}{\sqrt{5}+1}$ • 3 $\frac{5+4\sqrt{5}+3}{4} = \frac{8+4\sqrt{5}}{4} = 2+\sqrt{5}$ • 4 $p=2$

	Give 1 mark for each •	Illustration(s) for awarding each mark
3(a)	ans: $P(1, 0); Q(-2, 27)$ (5 marks)•1knows derivative = 0 at S.P.•2takes derivative and factorises•3solves for x and chooses appropriate value•4substitutes to find y – coordinate•5states coordinates of P and Q	• ¹ $f'(x) = 0$ at SP [stated or implied] • ² $6x^2 + 6x - 12 = 0$; $6(x+2)(x-1) = 0$ • ³ $x = -2$ or 1 • ⁴ $f(-2) = 2(-2)^3 + 3(-2)^2 - 12(-2) + 7 = 27$ • ⁵ P(1, 0); Q(-2, 27)
(b)	 ans: 40.5 units² (4 marks) •¹ sets up integral •² integrates expression •³ substitutes values •⁴ evaluates 	• ¹ $\int_{-2}^{1} 2x^3 + 3x^2 - 12x + 7 dx$ • ² $\left[\frac{x^4}{2} + x^3 - 6x^2 + 7x\right]_{-2}^{1}$ $\left(\frac{(1)^4}{2} + (1)^3 - 6(1)^2 + 7(1)\right) - \left(\frac{(-2)^4}{2} + (-2)^3 - 6(-2)^2 + 7(-2)\right)$ • ⁴ 40.5 units ²
4	 ans: 30°,150°,270°. (5 marks) ¹ Re-arranges equation ² factorises ³ states solution for sinx ⁴ finds two solutions ⁵ finds further solution 	• $2\sin^2 x + \sin x - 1 = 0$ • $(2\sin x - 1)(\sin x + 1)$ • $\sin x = \frac{1}{2}$, AND $\sin x = -1$ • $x = 30^{\circ}$ and 150° • $x = 270^{\circ}$

	Give 1 mark for each •	Illustration(s) for awarding each mark
5(a)	ans: proof (2 marks)	
	 ¹ substitutes U₀ and finds U₁ ² substitutes U₁ and finds U₂ 	• $U_1 = \frac{a}{4} \times 16 + 12 = 4a + 12$ • $U_1 = \frac{a}{4}(4a + 12) + 12 = a^2 + 3a + 12$
(b)	ans: $a = 3$ (3 marks) • ¹ equates U_2 to 30 • ² collects terms to LHS and factorises • ³ solves for x and discards	• ¹ $a^{2} + 3a + 12 = 30$ • ² $a^{2} + 3a - 18 = 0; (a + 6)(a - 3) = 0$ • ³ $a = -6, 3; a = 3$
(c)	 ans: 48 (3 marks) •¹ knows condition for limit •² knows how to find limit •³ answer 	• 1 limit exists since $-1 < \frac{3}{4} < 1$ • 2 $L = \frac{12}{1 - 0.75} = \frac{12}{0.25}$ • 3 48
6(a)	ans: $y = 2x$ (3 marks) • ¹ finds midpoint of QR • ² finds gradient of PA • ³ substitutes in $y-b = m(x-a)$	• midpoint of QR = (2, 4) • $m_{PA} = \frac{4+6}{2+3} = 2$ • $y-4 = 2(x-2); y = 2x$
(b) (c)	ans: C(7, 14) (4 marks) • ¹ knows to substitute line into circle • ² multiplies and simplifies • ³ factorises and solves • ⁴ chooses appropriate value for x and subs ans: $(x-7)^2 + (y-14)^2 = 5$ (3 marks)	• $x^{2} + (2x)^{2} - 10x - 20(2x) + 105 = 0$ • $5x^{2} - 50x + 105 = 0$ • $5(x-3)(x-7) = 0$ • $x = 3,7; x = 7, y = 14$
	• 1 finds radius of larger circle • 2 finds radius of smaller circle • 3 subs into $(x - a)^2 + (y - b)^2 = r^2$	• radius (large) = $\sqrt{25+100-105} = \sqrt{20}$ • radius (small) = $\sqrt{5}$ • $(x-7)^2 + (y-14)^2 = 5$

	Give 1 mark for each •	Illustration(s) for awarding each mark
7(a)	ans: $k = 2$ (3 marks) • ¹ knows to use synthetic division • ² makes remainder = 0 • ³ solves for k	• ¹ evidence • ² $8-4k=0$ • ³ $k=2$
(b)	ans: $p = -3$ (3 marks) • ¹ equates function to 35 • ² collect terms to LHS and equates to 0 • ³ uses synthetic division to find root	• $p^{3} - 2p^{2} - 16p + 32 = 35$ • $p^{3} - 2p^{2} - 16p - 3 = 0$ • $p^{3} - 2p^{2} - 16p - 3 = 0$
(c)	 ans: 98° (2 marks) ¹ finds gradient of AB ² takes tan ⁻¹ and states angle 	• $m_{AB} = \frac{35 - 0}{-3 - 2} = -7$ • $\tan^{-1}(7) = 82^{\circ}; \text{ angle} = 98^{\circ}$
8	 ans: a = 3 (4 marks) •¹ evaluates integral •² finds derivative •³ makes integral = derivative •⁴ factorises and solves 	• $[x^2]_0^a = a^2$ • $\frac{d}{da} = 6a - 9$ • $\frac{a^2}{a^2} = 6a - 9; a^2 - 6a + 9 = 0$ • $(a - 3)(a - 3) = 0; a = 3$ Total: 60 marks