|  | Give 1 mark for each - | Illustration(s) for awarding each mark |
| :---: | :---: | :---: |
| 1(a) <br> (b) <br> (c) | ans: $\quad a=1 ; b=4, c=-29$ <br> (4 marks) <br> - ${ }^{1}$ finds gradient of BD <br> - ${ }^{2}$ finds gradient of AC <br> - ${ }^{3}$ subs into $y-b=m(x-a)$ and rearranges <br> - ${ }^{4}$ states values of $a, b$ and $c$ <br> ans: $\mathbf{E}(5,6)$ <br> (3 marks) <br> - ${ }^{1}$ knows to use system of equations <br> - ${ }^{2} \quad$ solves for $x$ and $y$ <br> - ${ }^{3}$ states coordinates of E <br> ans: $\mathbf{C}(13,4)$ <br> (2 marks) <br> - ${ }^{1}$ appropriate method <br> - ${ }^{2}$ answer | - ${ }^{1} \quad m_{\mathrm{BD}}=4$ [from equation] <br> - ${ }^{2} m_{\mathrm{AC}}=-1 / 4$ <br> - $3-8=-\frac{1}{4}(x+3) ; x+4 y-29=0$ <br> - ${ }^{4} \quad a=1 ; b=4, c=-29$ <br> - ${ }^{1}$ evidence of equating one variable <br> - ${ }^{2} x=5 ; y=6$ <br> - ${ }^{3} \mathrm{E}(5,6)$ <br> - ${ }^{1}$ evidence of 'stepping out' or other method <br> $\bullet^{2} \quad \mathrm{C}(13,4)$ |
| 2(a) | ans: proof <br> - ${ }^{1}$ knows to substitute <br> - ${ }^{2}$ substitutes correctly <br> -3 clearly simplifies to answer <br> ans: $p=2$ <br> (4 marks) <br> - ${ }^{1}$ substitute for $x$ <br> - ${ }^{2}$ knows to multiply by conjugate surd <br> - ${ }^{3}$ multiplies and simplifies <br> - ${ }^{4} \quad$ states value of $p$ | - ${ }^{1}$ evidence of sub. one function in other <br> -2 $f\left(\frac{1}{x-1}\right)=\frac{4}{x-1}+1$ <br> -3 $\frac{4+x-1}{x-1}=\frac{x+3}{x-1}$ <br> - $\frac{\sqrt{5}+3}{\sqrt{5}-1}$ <br> -2 $\frac{\sqrt{5}+3}{\sqrt{5}-1} \times \frac{\sqrt{5}+1}{\sqrt{5}+1}$ <br> - $\frac{5+4 \sqrt{5}+3}{4}=\frac{8+4 \sqrt{5}}{4}=2+\sqrt{5}$ <br> - ${ }^{4} \quad p=2$ |

\begin{tabular}{|c|c|c|}
\hline \& Give 1 mark for each - \& Illustration(s) for awarding each mark \\
\hline 3(a)

(b) \& \begin{tabular}{l}
ans: $\mathbf{P}(\mathbf{1}, \mathbf{0}) ; \mathbf{Q}(-2,27)$ \\
(5 marks) \\
- ${ }^{1}$ knows derivative $=0$ at S.P. \\
- ${ }^{2}$ takes derivative and factorises \\
- ${ }^{3}$ solves for $x$ and chooses appropriate value \\
- ${ }^{4}$ substitutes to find $y$-coordinate \\
- 5 states coordinates of P and Q \\
ans: 40.5 units $^{2}$ \\
(4 marks) \\
- ${ }^{1}$ sets up integral \\
- ${ }^{2}$ integrates expression \\
- ${ }^{3}$ substitutes values \\
- ${ }^{4}$ evaluates

 \& 

- $f^{\prime}(x)=0$ at SP [stated or implied] \\
- ${ }^{2} 6 x^{2}+6 x-12=0 ; 6(x+2)(x-1)=0$ \\
- ${ }^{3} x=-2$ or 1 \\
-4 $f(-2)=2(-2)^{3}+3(-2)^{2}-12(-2)+7=27$ \\
- $\quad \mathrm{P}(1,0) ; \mathrm{Q}(-2,27)$ \\
- $\int_{-2}^{1} 2 x^{3}+3 x^{2}-12 x+7 d x$ \\
- $2\left[\frac{x^{4}}{2}+x^{3}-6 x^{2}+7 x\right]_{-2}^{1}$ \\
- $3\left(\frac{(1)^{4}}{2}+(1)^{3}-6(1)^{2}+7(1)\right)-$

$$
\left(\frac{(-2)^{4}}{2}+(-2)^{3}-6(-2)^{2}+7(-2)\right)
$$ \\

- ${ }^{4} 40 \cdot 5$ units $^{2}$
\end{tabular} \\

\hline 4 \& | ans: $\mathbf{3 0}^{\circ}, \mathbf{1 5 0}^{\circ}, \mathbf{2 7 0}^{\circ}$. |
| :--- |
| (5 marks) |
| - ${ }^{1}$ Re-arranges equation |
| - ${ }^{2}$ factorises |
| - ${ }^{3}$ states solution for $\sin x$ |
| - ${ }^{4}$ finds two solutions |
| - 5 finds further solution | \& | - ${ }^{1} \quad 2 \sin ^{2} \mathrm{x}+\sin \mathrm{x}-1=0$ |
| :--- |
| $\bullet^{2} \quad(2 \sin x-1)(\sin x+1)$ |
| - $\quad \sin x=\frac{1}{2}$, AND $\sin x=-1$ |
| -4 $\mathrm{x}=30^{\circ}$ and $150^{\circ}$ |
| - ${ }^{5} \mathrm{x}=270^{\circ}$ | \\

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& Give 1 mark for each - \& Illustration(s) for awarding each mark \\
\hline \begin{tabular}{l}
5(a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
ans: proof \\
- \({ }^{1} \quad\) substitutes \(U_{0}\) and finds \(U_{1}\) \\
- \({ }^{2} \quad\) substitutes \(U_{1}\) and finds \(U_{2}\) \\
ans: \(a=3\) \\
(3 marks) \\
- \({ }^{1}\) equates \(U_{2}\) to 30 \\
- \({ }^{2}\) collects terms to LHS and factorises \\
\(\bullet^{3} \quad\) solves for \(x\) and discards \\
ans: 48 \\
(3 marks) \\
- \({ }^{1}\) knows condition for limit \\
- \({ }^{2}\) knows how to find limit \\
- \({ }^{3}\) answer
\end{tabular} \& \begin{tabular}{l}
- \({ }^{1} \quad U_{1}=\frac{a}{4} \times 16+12=4 a+12\) \\
- \(\quad U_{1}=\frac{a}{4}(4 a+12)+12=a^{2}+3 a+12\) \\
- \({ }^{1} a^{2}+3 a+12=30\) \\
- \({ }^{2} a^{2}+3 a-18=0 ;(a+6)(a-3)=0\) \\
- \({ }^{3} a=-6,3 ; a=3\) \\
- 1 limit exists since \(-1<\frac{3}{4}<1\) \\
- \(\quad L=\frac{12}{1-0 \cdot 75}=\frac{12}{0 \cdot 25}\) \\
- 348
\end{tabular} \\
\hline 6(a)
(b)

(c) \& \begin{tabular}{l}
ans: $y=2 x$ \\
(3 marks) \\
- ${ }^{1}$ finds midpoint of QR \\
- ${ }^{2}$ finds gradient of PA \\
- ${ }^{3}$ substitutes in $y-b=m(x-a)$ \\
ans: $\quad C(7,14)$ \\
(4 marks) \\
- ${ }^{1}$ knows to substitute line into circle \\
- ${ }^{2}$ multiplies and simplifies \\
- ${ }^{3}$ factorises and solves \\
- ${ }^{4} \quad$ chooses appropriate value for $x$ and subs \\
ans: $(x-7)^{2}+(y-14)^{2}=5$ \\
(3 marks) \\
- ${ }^{1}$ finds radius of larger circle \\
- ${ }^{2}$ finds radius of smaller circle \\
- $\quad$ subs into $(x-a)^{2}+(y-b)^{2}=r^{2}$

 \& 

- ${ }^{1}$ midpoint of $\mathrm{QR}=(2,4)$ \\
- $\quad m_{P A}=\frac{4+6}{2+3}=2$ \\
- $3-4=2(x-2) ; y=2 x$ \\
- $x^{2}+(2 x)^{2}-10 x-20(2 x)+105=0$ \\
- ${ }^{2} 5 x^{2}-50 x+105=0$ \\
- 3 ( $x-3)(x-7)=0$ \\
-4 $x=3,7 ; x=7, y=14$ \\
- ${ }^{1}$ radius $($ large $)=\sqrt{25+100-105}=\sqrt{20}$ \\
- ${ }^{2} \quad$ radius $($ small $)=\sqrt{5}$ \\
- $\quad(x-7)^{2}+(y-14)^{2}=5$
\end{tabular} \\

\hline
\end{tabular}

|  | Give 1 mark for each - | Illustration(s) for awarding each mark |
| :---: | :---: | :---: |
| 7(a) <br> (b) <br> (c) | ans: $k=2$ <br> (3 marks) <br> - ${ }^{1}$ knows to use synthetic division <br> - ${ }^{2}$ makes remainder $=0$ <br> - ${ }^{3}$ solves for $k$ <br> ans: $p=-3$ <br> (3 marks) <br> - ${ }^{1}$ equates function to 35 <br> - ${ }^{2}$ collect terms to LHS and equates to 0 <br> - 3 uses synthetic division to find root <br> ans: $\mathbf{9 8}^{\mathbf{0}}$ <br> (2 marks) <br> - ${ }^{1}$ finds gradient of AB <br> - ${ }^{2}$ takes $\tan ^{-1}$ and states angle | - ${ }^{1}$ evidence <br> - ${ }^{2} \quad 8-4 k=0$ <br> -3 $k=2$ <br> - $p^{3}-2 p^{2}-16 p+32=35$ <br> - $2 p^{3}-2 p^{2}-16 p-3=0$ <br> - $\quad p=-3$ <br> - $m_{A B}=\frac{35-0}{-3-2}=-7$ <br> - $\quad \tan ^{-1}(7)=82^{\circ} ;$ angle $=98^{\circ}$ |
| 8 | ans: $\quad a=3$ <br> - ${ }^{1}$ evaluates integral <br> - ${ }^{2}$ finds derivative <br> - ${ }^{3}$ makes integral $=$ derivative <br> - ${ }^{4}$ factorises and solves | - $\quad\left[x^{2}\right]_{0}^{a}=a^{2}$ <br> - $2 \frac{d}{d a}=6 a-9$ <br> - $a^{2}=6 a-9 ; a^{2}-6 a+9=0$ <br> - ${ }^{4}(a-3)(a-3)=0 ; a=3$ |

