Higher Grade Paper 2 2008/2009
Marking Scheme

	Give 1 mark for each -	Illustration(s) for awarding each mark
1(a) (b) (c) (d)	ans: $k=6$ - ${ }^{1}$ knows to substitute point - ${ }^{2}$ establishes value of k ans: $y=-\frac{2}{3} x+6$ (4 marks) - ${ }^{1}$ finds coordinates of C_{1} - ${ }^{2}$ finds gradient of radius -3 finds gradient of tangent - ${ }^{4}$ substitutes into formula ans: $\quad C_{2}(\mathbf{9}, 0)$ (1 mark) - ${ }^{1} \quad$ subs point, solves for x and states point ans: $\mathbf{2 . 2}$ units (3 marks) - ${ }^{1}$ finds radius C_{1} circle \bullet finds distance between centres - ${ }^{3}$ establishes d	- ${ }^{1}(0+4)^{2}+k^{2}=52$ - ${ }^{2} \quad k=6$ - ${ }^{1} \mathrm{C}(-4,0)$ - $m_{C_{1} P}=\frac{6}{4}=\frac{3}{2}$ - $m_{\mathrm{tan}}-\frac{2}{3}$ - ${ }^{4} y=-\frac{2}{3} x+6$ - ${ }^{1} \quad 0=-\frac{2}{3} x+6 ; x=9 ;(9,0)$ - ${ }^{1}$ radius $\mathrm{C}_{1}=7 \cdot 2$ - ${ }^{2} \quad \mathrm{C}_{1} \mathrm{C}_{2}=13$ - ${ }^{3} d=(7 \cdot 2+8)-13=2 \cdot 2$
2	ans: 60, 120, 240, 300 (5 marks) - ${ }^{1}$ obtains composite - ${ }^{2}$ equates to 0 - ${ }^{3}$ solves -4 finds two solutions -5 finds two solutions	- ${ }^{1} h(x)=4 \cos ^{2} x+1$ - ${ }^{2} \quad 4 \cos ^{2} x+1=0$ - $\quad \cos x=\frac{1}{2}$ and $\cos x=-\frac{1}{2}$ - ${ }^{4} \quad x=60,300$ -5 $\mathrm{x}=120,240$

	Give 1 mark for each -	Illustration(s) for awarding each mark
3(a) (b)	ans: $y=x^{2}+\frac{6}{x}-4$ (4 marks) - ${ }^{1}$ knows to integrate - ${ }^{2}$ integrates - ${ }^{3}$ subs point - ${ }^{4}$ solves for C and states function ans: $p=7$ (1 mark) - ${ }^{1} \quad$ subs point and solves for p	- ${ }^{1} y=\int 2 x-\frac{6}{x^{2}} d x$ - $2 y=x^{2}+\frac{6}{x}+C$ - $3=2^{2}+\frac{6}{2}+C$ - $4=x^{2}+\frac{6}{x}-4$ - ${ }^{1} \quad p=3^{2}+\frac{6}{3}-4=7$
4(a) (b) (c) (d)	ans: $\mathbf{P}(\mathbf{3}, \mathbf{0})$ (2 marks) - ${ }^{1}$ knows to make function equal to 0 - ${ }^{2} \quad$ solves for x and states cords of P ans: $2 y+3 x=9$ (1 mark) - ${ }^{1}$ subs info into formula for straight line ans: $y-11 x=17$ (4 marks) - ${ }^{1}$ knows to take derivative - ${ }^{2}$ subs to find gradient - ${ }^{3}$ subs to find point of contact -4 subs into straight line formula ans: $Q(-1,6)$ (3 marks) - ${ }^{1}$ knows to use sim. eqs. - ${ }^{2} \quad$ solves for x and y - ${ }^{3}$ states coordinates of Q	- $x^{3}-x^{2}-5 x-3=0$ - ${ }^{2} \quad x=3 ; \mathrm{P}(3,0)$ - ${ }^{1} y=-\frac{3}{2}(x-3)$ - $\frac{d y}{d x}=3 x^{2}-2 x-5$ - $23(-2)^{2}-2(-2)-5=11$ - $3 y=(-2)^{3}-(-2)^{2}-5(-2)-3=-5$ $\bullet^{4} y+5=11(x+2) ; y-11 x=17$ - ${ }^{1}$ evidence -2 $x=-1$ and $y=6$ -3 $\mathrm{Q}(-1,6)$

	Give 1 mark for each -	Illustration(s) for awarding each mark
5(a) (b) (c)	ans: 143.3gu's (2 marks) - ${ }^{1}$ knows how to calculate answer - ${ }^{2}$ answer ans: 135.8 gu 's (3 marks) - ${ }^{1}$ sets up recurrence relation -2 repeated calculations to answer - ${ }^{3}$ repeated calculations to answer ans: yes since lower limit is 80.8 (3 marks) -1 knows to find limit - 2 finds limit - realises lower limit is less than 100	- ${ }^{1} 0.92^{4} \times 200$ - ${ }^{2} 143 \cdot 3 g u^{\prime} s$ - ${ }^{1} \quad U_{n+1}=0 \cdot 92^{4} U_{n}+32$ \bullet^{2} 175.3[after 4 hours]; 157•6[after 8 hours] - ${ }^{3} 144 \cdot 9$ [after 12 hours]; 135•8[after 16 hours] - $\quad L=\frac{32}{1-0.92^{4}}$ - $2 \quad L=112 \cdot 8$ -3 brightness would fall below 100 since lower limit is $80 \cdot 8$
6(a) (b)	ans: proof - ${ }^{1}$ cross multiplies and multiplies out - ${ }^{2}$ brings to LHS - ${ }^{3}$ rearranges as required ans: $\quad k=\frac{5}{4}$ (5 marks) - ${ }^{1}$ states condition for equal roots - ${ }^{2}$ states values of a, b and c -3 substitutes into $b^{2}-4 a c$ - ${ }^{4}$ multiplies out and simplifies - ${ }^{5}$ solves for k	- ${ }^{1} k\left(x^{2}+4\right)=x^{2}-2 x+1$ - ${ }^{2} k x^{2}-x^{2}+2 x+4 k-1$ - ${ }^{3}(k-1) x^{2}+2 x+(4 k-1)=0$ - ${ }^{1} b^{2}-4 a c=0$ for equal roots [stated/implied] - $\quad a=(k-1) ; b=2 ; c=(4 k-1)$ - $2^{2}-4(k-1)(4 k-1)=0$ - $420 k-16 k^{2}=0$ - ${ }^{5} \quad k=\frac{5}{4}$

	Give 1 mark for each -	Illustration(s) for awarding each mark
7(a) (b)	ans: proof - ${ }^{1}$ finds expression for length of shed - 2 finds expression for area of g'house - ${ }^{3}$ simplifies to correct form ans: 15 (5 marks) - ${ }^{1}$ knows to equate derivative to 0 - ${ }^{2}$ prepares to differentiate - ${ }^{3}$ differentiates - ${ }^{4}$ solves for x - 5 justifies answer	- ${ }^{1}$ length of shed $=\frac{3}{x}$ - $2 \quad A=(x+3)\left(4+\frac{3}{x}\right)-3$ - $A=4 x+3+12+\frac{9}{x}-3 \rightarrow$ answer - $\frac{d y}{d x}=0$ - $2 A(x)=12+4 x+9 x^{-1}$ - $A^{\prime}(x)=4-\frac{9}{x^{2}}=0$ - $4-\frac{9}{x^{2}}=0 ; x^{2}=\frac{9}{4} ; x=\frac{3}{2}$ ${ }^{5} \downarrow \longrightarrow$ or other acceptable method
8(a)	ans: $\quad \frac{\pi}{2}$ radians (6 marks) - ${ }^{1}$ identifies coefficients - ${ }^{2}$ identifies one factor -3 correct second factor $-{ }^{4}$ $\bullet{ }^{5}$ solves \bullet valid conclusion for $\sin ^{2} \theta=-4$	$\begin{array}{llllll}{ }^{1} & 1 & -1 & 4 & -4\end{array}$ - ${ }^{2}(\sin \theta-1)$ $\left(\sin ^{2} \theta+4\right)$ $\sin \theta=1$ and $\sin ^{2} \theta=-4$ - ${ }^{5} \theta=\frac{\pi}{2}$ radians - ${ }^{6} \sin 2 \theta=-4$ has no solution

