	Give 1 mark for each -	Illustration(s) for awarding each mark
$\mathbf{1 (a)}$ (b) (c)	ans: $2 y-x=-2$ (3 marks) - ${ }^{1}$ finds midpoint of BC - ${ }^{2}$ establishes gradient of AM -3 substitutes in general equation ans: $\mathbf{D}(\mathbf{4}, \mathbf{1})$ (3 marks) - ${ }^{1}$ realising $y=1$ - ${ }^{2}$ substitutes into equation - ${ }^{3}$ states coordinates of D ans: proof (3 marks) - ${ }^{1}$ finds gradient of BD -2 knows condition for perp. lines -3 makes statement re perpendicular	- ${ }^{1}$ midpoint $\mathrm{BC}:(10,4)$ - $\quad m_{A M}=\frac{4+2}{10+2}=\frac{1}{2}$ - ${ }^{3} y-4=\frac{1}{2}(x-10)$ - $1 \quad y=1$ - $2(1)-x=-2 ; x=4$ - ${ }^{3} \mathrm{D}(4,1)$ - $m_{B D}=-2$ -2 $m_{1} \times m_{2}=-1 \quad$ [stated or implied] - ${ }^{3} \quad \frac{1}{2} \times-2=-1$ so AM and BD are perp.
2(a)	ans: $P\left(1,-\frac{25}{2}\right)$ (4 marks) - ${ }^{1}$ knows to take derivative and equate to 0 - ${ }^{2}$ takes derivative -3 solves to find x - coordinate - ${ }^{4}$ substitutes to find y-coordinate ans: $\mathbf{Q (6 , 0)}$ (3 marks) - ${ }^{1}$ knows to make $y=0$ - ${ }^{2}$ uses synthetic division to find x -3 states coordinates of Q	- $\frac{d y}{d x}=0$ - $2 x^{2}-15 x+12=0$ - ${ }^{3} x=1$ [or 4] - $4 \quad y=1^{3}-\frac{15}{2}(1)+12(1)-18=-\frac{25}{2}$ - ${ }^{1} y=0$ - $\begin{array}{rc}2 & 6 \left\lvert\, \begin{array}{cccc}1 & -\frac{15}{2} & 12 & -18 \\ 6 & -9 & 18\end{array}\right. \\ & \begin{array}{llll}1 & -\frac{3}{2} & 3 & 0\end{array}\end{array}$ - $\mathrm{Q}(6,0)$

\begin{tabular}{|c|c|c|}
\hline \& Give 1 mark for each • \& Illustration(s) for awarding each mark \\
\hline \begin{tabular}{l}
3(a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
ans: \(\mathbf{3 2 . 6}\) gigatonnes \\
- \({ }^{1}\) correct multiplier \\
- \({ }^{2}\) completes calculation \\
- \({ }^{3}\) calculation and correct rounding \\
ans: \(\mathbf{3 1}\) gigatonnes \\
- \({ }^{1}\) sets up recurrence relation \\
- \({ }^{2}\) knows to calculate 3 figures \\
- \({ }^{3}\) final answer \\
ans: upper 20.6; lower 16.8 \\
(3 marks) \\
- \({ }^{1}\) knows limit exists \\
- \({ }^{2}\) finds upper limit \\
-3 finds lower limit
\end{tabular} \& \begin{tabular}{l}
- 0.96 \\
- \({ }^{2} 0.96^{5} \times 40\) \\
- \(32 \cdot 6\) gigatonnes \\
- \({ }^{1} \quad U_{n+1}=0 \cdot 96^{5} U_{n}+3 \cdot 8\) \\
- \({ }^{2} 1^{\text {st }}\) year: \(36 \cdot 4 ; 2^{\text {nd }}\) year: 33.4795 \\
- \(3^{\text {rd }}\) year: 31 gigatonnes \\
- \({ }^{1}\) limit exists since \(-1<0.96^{5}<1\) \\
- \(2 \quad L=\frac{3 \cdot 8}{1-(0 \cdot 96)^{5}}=20.6\) \\
- \({ }^{3} \quad 20 \cdot 6-3 \cdot 8=16 \cdot 8\)
\end{tabular} \\
\hline \begin{tabular}{l}
4(a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
ans: \(\quad a=-2\) \\
(2 marks) \\
- \({ }^{1}\) finds expression for \(f(g(-2))\) \\
- \({ }^{2} \quad\) equates to -1 and solves for \(a\) \\
ans: \(\quad x=-2,0,2\) \\
(5 marks) \\
- \({ }^{1}\) substitutes \\
- \({ }^{2}\) simplifies \\
- \({ }^{3}\) equates to 2 \\
- \({ }^{4}\) factorises \\
- 5 solves for \(x\)
\end{tabular} \& \begin{tabular}{l}
- \(\quad f(g(-2))=f(-1)=1+a\) \\
- \({ }^{2} \quad a=-2\) \\
- \(\quad f(f(x))=\left(x^{2}-2\right)^{2}-2\) \\
- \(x^{4}-4 x^{2}+2\) \\
-3 \(x^{4}-4 x^{2}+2=2 ; x^{4}-4 x^{2}=0\) \\
- \({ }^{4} \quad x^{2}\left(x^{2}-4\right)=0\) \\
- \({ }^{5} x=-2,0,2\)
\end{tabular} \\
\hline 5(a)

(b) \& \begin{tabular}{l}
ans: $x=1$ \\
(2 marks) \\
- ${ }^{1}$ realises $\mathrm{y}=0$; equates to 0 \\
- ${ }^{2}$ solves for x \\
ans: $b=2$ \\
(5 marks) \\
- ${ }^{1}$ integrates expression \\
- ${ }^{2}$ substitutes values \\
- ${ }^{3}$ simplifies, equates to 1 , rearranges \\
- ${ }^{4}$ uses synthetic division to solve \\
- 5 realises one solution; discards $b^{2}-b+1$

 \&

- ${ }^{1} \quad 3 x^{2}-6 x+3=0$ \\
- $23(x-1)^{2}=0 ; x=1$ \\
-1 $\left[x^{3}-3 x^{2}+3 x\right]_{1}^{b}$ \\
- ${ }^{2}\left(b^{3}-3 b^{2}+3 b\right)-(1-3+3)$ \\
- $b^{3}-3 b^{2}+3 b-2=0$ \\
- ${ }^{4}$| 2 | $\begin{array}{rrrr}1 & -3 & 3 & -2 \\ & & 2 & -2\end{array}$ | 2 |
| ---: | :--- | ---: | ---: | ---: | \\

$\bullet^{5} \quad b=2$
\end{tabular} \\

\hline
\end{tabular}

