Higher Grade Paper 2 2011/2012
Marking Scheme

\begin{tabular}{|c|c|c|}
\hline \& Give 1 mark for each \& Illustration(s) for awarding each mark \\
\hline \begin{tabular}{l}
1(a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
ans: \(\quad 3 y-x=4\) \\
- \({ }^{1}\) finds gradient \\
- \({ }^{2} \quad\) finds equation of altitude \\
ans: \(x=4\) \\
- \({ }^{1}\) states equation of median \\
ans: \(\left(4, \frac{8}{3}\right)\) \\
- \({ }^{1} \quad\) subs \(\mathrm{x}=4\) into altitude to find y \\
-2 states coords of intersection
\end{tabular} \& \begin{tabular}{l}
- \({ }^{1} \quad \mathrm{~m}_{\mathrm{BC}}=-3\) therefore \(\mathrm{m}(\) altitude \()=\frac{1}{3}\) \\
- \(2 y-2=\frac{1}{3}(x-2)\) \\
- \({ }^{1}\) from mid-point \((4,3)\) states \(x=4\) \\
- \({ }^{1} \mathrm{y}=\frac{8}{3}\) \\
- \({ }^{2}\left(4, \frac{8}{3}\right)\)
\end{tabular} \\
\hline \begin{tabular}{l}
2(a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
ans: proof \\
- \({ }^{1}\) subs one function into the other \\
- \({ }^{2}\) multiplies inner bracket \\
- \({ }^{3}\) multiplies to answer \\
ans: \(\mathbf{A}(2,16)\) \\
(5 marks) \\
- \({ }^{1}\) knows to make \(\frac{d y}{d x}=0\) \\
-2 differentiates \\
- \({ }^{3}\) solves for \(x\) \\
- \({ }^{4}\) chooses correct values \& subs to find \(y\) \\
- \({ }^{5}\) states coordinates of A
\end{tabular} \& \begin{tabular}{l}
- \({ }^{1} f(x-3)=(x-3-1)^{2}=(x-4)^{2}\) \\
- \(2 h(x)=\left[x^{2}-8 x+16\right] x^{2}\) \\
- \(^{3} x^{4}-8 x^{3}+16\) \\
- \(\frac{d y}{d x}=0\) \\
-2 \(\frac{d y}{d x}=4 x^{3}-24 x^{2}+32 x=0\) at SP \\
- \({ }^{3} 4 x(x-4)(x-2)=0 ; x=2,4\) \\
- \({ }^{4} y=(2)^{4}-8(2)^{3}+16(2)^{2}=16\) \\
- \({ }^{5} \mathrm{~A}(2,16)\)
\end{tabular} \\
\hline 3(a)

(b) \& \begin{tabular}{l}
ans: $p=0.5$ \\
- ${ }^{1}$ gives expression for both limits \\
- ${ }^{2}$ equates limits \\
- ${ }^{3}$ starts to solve \\
- ${ }^{4}$ solves and discards \\
ans: 22 \\
(3 marks) \\
- ${ }^{1}$ finds $1^{\text {st }}$ term for one RR \\
-2 finds $1^{\text {st }}$ term for other RR

 \&

- ${ }^{1} L=\frac{6}{1-p} ; L=\frac{9}{1-p^{2}}$ \\
- $2 \frac{6}{1-p}=\frac{9}{1-p^{2}}$ \\
- $6-6 p^{2}=9-9 p ; 6 p^{2}-9 p+3=0$ \\
-4 $3(2 p-1)(p-1)=0 ; p=0 \cdot 5$ or $p=1$ \\
- $\quad U_{1}=\frac{1}{2}(100)+6=56$ \\
- $U_{1}=\left(\frac{1}{2}\right)^{2}(100)+6=34$
\end{tabular} \\

\hline
\end{tabular}

- ${ }^{3}$ calculates difference in terms

	Give 1 mark for each -	Illustration(s) for awarding each mark
4	ans: $y=x^{3}+x^{2}+3$ (4 marks) - ${ }^{1}$ knows to integrate - ${ }^{2}$ answer - subs for x and y to solve for c - ${ }^{4}$ Equation	- $1 \quad y=x^{3}+x^{2}$ - ${ }^{2} y=x^{3}+x^{2}+c$ - $\quad \mathrm{c}=3$ - ${ }^{4} y=x^{3}+x^{2}+3$
$5(a)$ (b)	ans: $\quad \mathbf{P}(-2,0)$ - ${ }^{1}$ equates function to 0 \bullet^{2} solves using suitable strategy \bullet^{3} states coordinates of P ans: 4 square units (4 marks) - ${ }^{1}$ knows how to find area - ${ }^{2}$ integrates \bullet^{3} subs values - ${ }^{4}$ evaluates	- $x^{3}+6 x^{2}+12 x+8=0$ at P - ${ }^{2}$ suitable strategy leading to $x=-2$ -3 $\mathrm{P}(-2,0)$ - $\int_{-2}^{0} x^{3}+6 x^{2}+12 x+8 d x$ - $2\left[\frac{x^{4}}{4}+2 x^{3}+6 x^{2}+8 x\right]_{-2}^{0}$ - $\quad 0-\left(\frac{(-2)^{4}}{4}+2(-2)^{3}+6(-2)^{2}+8(-2)\right)$ - 4 square units
6(a) (b) (c)	ans: $\quad \mathbf{y}+\mathrm{x}=\mathbf{3}$ (3 marks) - ${ }^{1}$ finds gradient of CP - ${ }^{2}$ Subs into straight line equation - ${ }^{1} \quad$ Subs ($2, \mathrm{k}$) into CP ans: $(x-2)^{2}+(y-1)^{2}=18$ (3 marks) - ${ }^{1}$ finds midpoint of CP - 2 finds radius (length of CQ) - ${ }^{3}$ subs into general equation of circle	- ${ }^{1} \quad m_{\text {tangent }}=-1$ so $m_{\text {radius }}=1$ $\bullet^{2} y-7=-1(x+4)$ - ${ }^{1} \mathrm{k}=1$ - ${ }^{1} \mathrm{Q}(-1,4)$ - $r^{2}=3^{2}+3^{2}=18$ - $(x-2)^{2}+(y-1)^{2}=18$

	Give 1 mark for each -	Illustration(s) for awarding each mark
7(a) (b) (c)	ans: proof - ${ }^{1}$ gives expression for length and breadth -2 subs into formula and starts to simplify - ${ }^{3}$ completes simplification to answer ans: $x=5$ (5 marks) - ${ }^{1}$ knows to make derivative $=0$ - 2 takes derivative - ${ }^{3}$ factorises and solves - ${ }^{4}$ discards - ${ }^{5}$ justifies answer ans: 2 litres (1 mark) - ${ }^{1}$ calculates volume	- ${ }^{1}(30-2 x)$ - ${ }^{2} x(30-2 x)^{2}$ - ${ }^{3} x\left(900-120 x+4 x^{2}\right)$ - $V^{\prime}(x)=0$ - $212 x^{2}-240 x+900=0$ - $32(x-5)(x-15)=0$ - $4 x=5$ - 5 nature table or $2^{\text {nd }}$ derivative - ${ }^{1} 20 \times 20 \times 5=2000 \mathrm{~cm}^{3}=2$ litres
88	ans: $\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{3 \pi}{2}$ radians (5 marks) - ${ }^{1}$ factorises - ${ }^{2}$ begins to solve - \quad solves $\sin x=\frac{1}{2}$ - ${ }^{4}$ - \quad solves $\sin x=-1$	- ${ }^{1} \quad(2 \sin x-1)(\sin x+1)=0$ - $2 \quad 2 \sin \mathrm{x}=1$ and $\sin \mathrm{x}=-1$ - $\quad \mathrm{x}=\frac{\pi}{6}$ radians -4 $\mathrm{x}=\frac{5 \pi}{6}$ radians - $5 \quad \mathbf{x}=\frac{3 \pi}{2}$ radians

