Please make sure you have filled in all your details above before handing in this answer sheet.

Higher Grade - Paper 1 2011/2012
ANSWERS - Section A

1	B
2	D
3	B
4	C
$\mathbf{5}$	C
$\mathbf{6}$	D
7	C
8	B
9	C
10	A
11	D
12	D
13	B
14	C
15	B
16	D
17	B
18	C
19	A
20	C

	A	B	C	D
1	\square	-	\square	\square
2	\square	\square	\square	\square
3	\square	-	\square	\square
4	\square	\square	-	\square
5	\square	\square	\square	\square
6	\square	\square	\square	\square
7	\square	\square	-	\square
8	\square	\square	\square	\square
9	\square	\square	\square	\square
10	\square	\square	\square	\square
11	\square	\square	\square	\square
12	\square	\square	\square	\square
13	\square	-	\square	\square
14	\square	\square	-	\square
15	\square	\square	\square	\square
16	\square	\square	\square	\square
17	\square	\square	\square	\square
18	\square	\square	\square	\square
19	-	\square	\square	\square
20	\square	\square	\square	\square

	Give 1 mark for each -	Illustration(s) for awarding each mark
21(a) (b)	ans: $Q(9,7) ;(\sqrt{ } 45)$ or $3 \sqrt{ } 5$ (3 marks) - ${ }^{1} \quad$ states centre of C_{2} - ${ }^{2}$ knows how to find radius - ${ }^{3}$ evaluates ans: proof (3 marks) - ${ }^{1}$ finds distance between centres - ${ }^{2}$ finds total of 2 radii -3 conclusion	- $\quad \mathrm{Q}(9,7)$ - $r^{2}=9^{2}+7^{2}-85$ - ${ }^{3} \quad r=\sqrt{ } 45$ or $3 \sqrt{ } 5$ - ${ }^{1} \mathrm{PQ}^{2}=8^{2}+4^{2} ; \mathrm{PQ}=\sqrt{ } 80=4 \sqrt{ } 5$ - $2 \sqrt{ } 5+3 \sqrt{ } 5=4 \sqrt{ } 5$ - ${ }^{3}$ distance between centres $=$ sum of radii so circles touch at one point
22	ans: $\mathbf{a}=2$ (5 marks) - ${ }^{1}$ prepares to integrate - ${ }^{2}$ integrates - 3 subs and equates to 8 - ${ }^{4}$ factorises (uses synthetic division) - ${ }^{5}$ realises only solution is 2	- $\int_{0}^{a} 16-24 x+9 x^{2} d x$ - $2\left[16 x-12 x^{2}+3 x^{3}\right]_{0}^{a}$ - ${ }^{3} \quad 16 a-12 a^{2}+3 a^{3}=8$ - ${ }^{4} \quad(a-2)\left(3 a^{2}-6 a+4\right)=0$ ${ }^{5} \quad a=2$
23(a) (b)	ans: $y=4 x-9$ (4 marks) - ${ }^{1}$ find coordinates of S - ${ }^{2}$ finds gradient of AB - ${ }^{3}$ knows to use parallel gradient - ${ }^{4}$ subs info into equation of straight line ans: $\quad \mathbf{D}(2,-1)$ (2 marks) - ${ }^{1}$ evidence of 'stepping out' or other suitable method - ${ }^{2}$ answer	- ${ }^{1} \quad \mathrm{~S}(4,7)$ - $m_{A B}=\frac{5+3}{-2+4}=4$ -3 $m=4$ -4 $y-7=4(x-4)$ - ${ }^{1}$ evidence of suitable strategy - ${ }^{2} \mathrm{D}(2,-1)$

	Give 1 mark for each -	Illustration(s) for awarding each mark
24(a)	ans: $4 x+3 y-36=0$ (4 marks) - ${ }^{1}$ finds centre - ${ }^{2}$ finds gradient of radius - ${ }^{3}$ states gradient of tangent - ${ }^{4}$ subs value into formula	- ${ }^{1}(2,1)$ - $2 \frac{3}{4}$ - ${ }^{3}-\frac{4}{3}$ - $4 \quad y-4=-\frac{4}{3}(x-6)$
25	ans: $k=\frac{1}{2}$ (7 marks) - ${ }^{1}$ knows to sub line into circle - ${ }^{2}$ multiplies - ${ }^{3}$ simplifies - ${ }^{4} \quad$ solves for y - ${ }^{5}$ subs to find x - ${ }^{6}$ subs point into line - ${ }^{7} \quad$ solves for k	- ${ }^{1}(3 y+10)^{2}+y^{2}-4(3 y+10)-8 y-20=0$ $\bullet^{2} 9 y^{2}+60 y+100+y^{2}-12 y-40-8 y-20=0$ - $10 y^{2}+40 y+40=0$ - $10\left(y^{2}+4 y+4\right)=0 ;(y+2)^{2}=0 ; y=-2$ -5 $x=3(-2)+10=4$ - ${ }^{6}-2=4 k-4$ - ${ }^{7} \quad k=\frac{1}{2}$

