DINGWALL ACADEMY

Mathematics

Higher Mini-Prelim Examination 2011/2012

NATIONAL QUALIFICATIONS

Assessing Unit 3 + revision from Units 1 & 2

Time allowed - 1 hour 10 minutes

Read carefully

- 1. Calculators may be used in this paper.
- 2. Full credit will be given only where the solution contains appropriate working.
- 3. Answers obtained from readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$.

The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Trigonometric formulae:

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2\cos^2 A - 1$$

$$= 1 - 2\sin^2 A$$

Scalar Product: $a \cdot b = |a||b|\cos\theta$, where θ is the angle between a and b.

or

$$\boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{a}_1 \boldsymbol{b}_1 + \boldsymbol{a}_2 \boldsymbol{b}_2 + \boldsymbol{a}_3 \boldsymbol{b}_3$$
 where $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$

Table of standard derivatives:

f(x)	f'(x)
sin ax cos ax	$a\cos ax$ $-a\sin ax$

Table of standard integrals:

f(x)	$\int f(x) \ dx$
$\sin ax$ $\cos ax$	$-\frac{1}{a}\cos ax + C$ $\frac{1}{a}\sin ax + C$

SECTION A

In this section the correct answer to each question is given by one of the alternatives **A**, **B**, **C** or **D**. Indicate the correct answer by writing **A**, **B**, **C** or **D** opposite the number of the question on your answer paper.

Rough working may be done on the paper provided. 2 marks will be given for each correct answer.

- 1. If k is a constant of integration then $\int \sqrt{4x+1} \ dx$ is
 - **A** $2(4x+1)^{-\frac{1}{2}} + k$
 - **B** $\frac{2}{3}(4x+1)^{\frac{3}{2}} + k$
 - C $\frac{1}{4}(4x+1)^{\frac{3}{2}} + k$
 - $\mathbf{D} \qquad \frac{1}{6}(4x+1)^{\frac{3}{2}} + k$
- 2. If a = 2i j + 3k and b = 8i 2j 6k. The value of $a \cdot b$ is
 - **A** 4
 - $\mathbf{B} = 0$
 - \mathbf{C} -4
 - **D** unknown without further information
- 3. The graph of $y = \log_2 4x$ crosses the x-axis at the point where x equals
 - **A** 2
 - **B** $0 \cdot 25$
 - **C** 4
 - $\mathbf{D} = 0.5$
- **4.** Given that x + 2 is a factor of $x^3 2x^2 3x + c$, then the value of c is
 - **A** 10
 - **B** -10
 - **C** 6
 - **D** -6
- 5. Given that |a| = 2, |b| = 3 and $a \cdot b = 4$, the value of $(2a b) \cdot (a + b)$ is
 - A
 - \mathbf{B} -1

3

- **C** 5
- $\mathbf{D} = 0$

- 6. Given that $f(x) = \frac{1}{(2x-5)^3}$, then f'(x) equals
 - $\mathbf{A} \qquad \frac{-6}{\left(2x-5\right)^2}$
 - $\mathbf{B} \qquad \frac{1}{6(2x-5)^4}$
 - $\mathbf{C} \qquad \frac{-6}{(2x-5)^4}$
 - **D** $\frac{-3}{(2x-5)^4}$
- 7. Part of the graph of $y = \log_{10} x$ is shown in each diagram below as a broken line.

Which diagram is most likely to show as an unbroken line part of the graph of $y = \log_{10} \frac{1}{x}$?

A

В

 \mathbf{C}

D

- 8. $\int_{0}^{\frac{\pi}{2}} \cos 2x \ dx \text{ is equal to}$
 - \mathbf{A} 0
 - \mathbf{B} -1
 - \mathbf{C} $\frac{1}{2}$
 - **D** 1

[END OF SECTION A] SECTION B

ALL questions should be attempted

9. In the diagram P, Q, and R have coordinates P(3,4,-1), Q(0,6,-6) and R(k,8,-10) respectively.

(a) Given that angle PQR is a right-angle, find the value of k.

(b) Calculate the size of angle RPS where S is the mid-point of QR.

6

4

10. A Baryon particle decays according to the formula $M_t = M_o e^{-0.0009 t}$, where M_o is the intitial mass of the substance and M_t is the mass remaining after t seconds.

Calculate, **to the nearest ten seconds**, how long a sample would take to lose 30% of its original mass.

5

11. (a) Express $3\cos x^{\circ} + \sqrt{7}\sin x^{\circ}$ in the form $k\sin(x+a)^{\circ}$, where k and a are constants and k > 0.

5

1

(b) Hence state the **minimum** value of f given that $f(x) = \frac{20}{3\cos x^\circ + \sqrt{7}\sin x^\circ}$.

- **12.** A sequence of numbers is defined by the recurrence relation $U_{n+1} = aU_n + 8$, where a is a constant.
 - (a) Given that $U_0 = 16$, show that, in terms of a, $U_2 = 8(2a^2 + a + 1)$.
- 2

3

- (b) Hence find a, where a > 0, given that $U_2 = 11$.

A function is defined on a suitable domain as $h(x) = 2 \sin 2x - \sqrt{3} \cos^2 x$.

Calculate the rate of change of this function at the point where $x = \frac{\pi}{3}$.

5

14. Given that $\log_3(x+1) + 2\log_3 2 = 2$, find the value of x.

3

[END OF SECTION B]

[END OF QUESTION PAPER]

13.