DINGWALL ACADEMY

Mathematics
 Higher Mini-Prelim Examination 2011/2012

Assessing Unit 3 + revision from Units 1 \& 2

Time allowed - 1 hour 10 minutes

Read carefully

1. Calculators may be used in this paper.
2. Full credit will be given only where the solution contains appropriate working.
3. Answers obtained from readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$.
The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Trigonometric formulae:

$$
\begin{aligned}
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B \\
\sin 2 A & =2 \sin A \cos A \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A
\end{aligned}
$$

Scalar Product: $\quad \boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \cos \theta$, where θ is the angle between \boldsymbol{a} and \boldsymbol{b}.

$$
\boldsymbol{a} \cdot \boldsymbol{b}=\boldsymbol{a}_{1} \boldsymbol{b}_{1}+\boldsymbol{a}_{2} \boldsymbol{b}_{2}+\boldsymbol{a}_{3} \boldsymbol{b}_{3} \text { where } \boldsymbol{a}=\left(\begin{array}{l}
\mathrm{a}_{1} \\
\mathrm{a}_{2} \\
\mathrm{a}_{3}
\end{array}\right) \text { and } \boldsymbol{b}=\left(\begin{array}{l}
\mathrm{b}_{1} \\
\mathrm{~b}_{2} \\
\mathrm{~b}_{3}
\end{array}\right)
$$

Table of standard derivatives:

$f(x)$	$f^{\prime}(x)$
$\sin a x$ $\cos a x$	$a \cos a x$ $-a \sin a x$

Table of standard integrals:

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+C$
$\cos a x$	$\frac{1}{a} \sin a x+C$

SECTION A

In this section the correct answer to each question is given by one of the alternatives $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}. Indicate the correct answer by writing $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D} opposite the number of the question on your answer paper.
Rough working may be done on the paper provided. 2 marks will be given for each correct answer.

1. If k is a constant of integration then $\int \sqrt{4 x+1} d x$ is

A $\quad 2(4 x+1)^{-\frac{1}{2}}+k$
B $\quad \frac{2}{3}(4 x+1)^{\frac{3}{2}}+k$
C $\quad \frac{1}{4}(4 x+1)^{\frac{3}{2}}+k$
D $\quad \frac{1}{6}(4 x+1)^{\frac{3}{2}}+k$
2. If $\boldsymbol{a}=2 \boldsymbol{i}-\boldsymbol{j}+3 \boldsymbol{k}$ and $\boldsymbol{b}=8 \boldsymbol{i}-2 \boldsymbol{j}-6 \boldsymbol{k}$. The value of $\boldsymbol{a} . \boldsymbol{b}$ is

A $\quad 4$
B 0
C $\quad-4$
D unknown without further information
3. The graph of $y=\log _{2} 4 x$ crosses the x-axis at the point where x equals

A $\quad 2$
B $\quad 0.25$
C $\quad 4$
D 0.5
4. Given that $x+2$ is a factor of $x^{3}-2 x^{2}-3 x+c$, then the value of c is

A $\quad 10$
B $\quad-10$
C 6
D -6
5. Given that $|\boldsymbol{a}|=2,|\boldsymbol{b}|=3$ and $\boldsymbol{a} \cdot \boldsymbol{b}=4$, the value of $(2 \boldsymbol{a}-\boldsymbol{b}) \cdot(\boldsymbol{a}+\boldsymbol{b})$ is

A $\quad 3$
B $\quad-1$
C 5
D 0
6. Given that $f(x)=\frac{1}{(2 x-5)^{3}}$, then $f^{\prime}(x)$ equals

A $\frac{-6}{(2 x-5)^{2}}$
B $\frac{1}{6(2 x-5)^{4}}$
C $\frac{-6}{(2 x-5)^{4}}$
D $\frac{-3}{(2 x-5)^{4}}$
7. Part of the graph of $y=\log _{10} x$ is shown in each diagram below as a broken line.

Which diagram is most likely to show as an unbroken line part of the graph of $y=\log _{10} \frac{1}{x}$?
A

B

C

D

8. $\int_{0}^{\frac{\pi}{2}} \cos 2 x d x$ is equal to

A $\quad 0$
B $\quad-1$
C $\quad \frac{1}{2}$
D $\quad 1$
[END OF SECTION A]

SECTION B

ALL questions should be attempted

9. In the diagram P, Q, and R have coordinates $\mathrm{P}(3,4,-1), \mathrm{Q}(0,6,-6)$ and $\mathrm{R}(k, 8,-10)$ respectively.

$$
\mathrm{R}(k, 8,-10)
$$

(a) Given that angle PQR is a right-angle, find the value of k.
(b) Calculate the size of angle RPS where S is the mid-point of QR .
10. A Baryon particle decays according to the formula $M_{t}=M_{o} e^{-0.0009 t}$, where M_{o} is the intitial mass of the substance and M_{t} is the mass remaining after t seconds.

Calculate, to the nearest ten seconds, how long a sample would take to lose 30% of its original mass.

11. (a) Express $3 \cos x^{\circ}+\sqrt{7} \sin x^{\circ}$ in the form $k \sin (x+a)^{\circ}$, where k and a are constants and $k>0$.
(b) Hence state the minimum value of f given that $f(x)=\frac{20}{3 \cos x^{\circ}+\sqrt{7} \sin x^{\circ}}$.
12. A sequence of numbers is defined by the recurrence relation $U_{n+1}=a U_{n}+8$, where a is a constant.
(a) Given that $U_{0}=16$, show that, in terms of $a, U_{2}=8\left(2 a^{2}+a+1\right)$.
(b) Hence find a, where $a>0$, given that $U_{2}=11$.
13. A function is defined on a suitable domain as $h(x)=2 \sin 2 x-\sqrt{3} \cos ^{2} x$. Calculate the rate of change of this function at the point where $x=\frac{\pi}{3}$.
14. Given that $\log _{3}(x+1)+2 \log _{3} 2=2$, find the value of x.

