<u>Higher Mini Prelim - Uni</u> t	<u>t 3</u>			<u>201</u>	<u>0/2011</u>	(Ans	swers -	+ Marking Scheme)
Section A - Answers	-	D D	-	A B	3 7	B B		C D
							, ,	2 marks each (16 marks)

Section B - Marking Scheme

	Give 1 mark for each •	Illustration(s) for awarding each mark
9(a) (b)	 ¹ valid method ² answer 	marks) • ¹ evidence of using stepping out/section formula • ² (11, -10, 2) marks) • ¹ $\overrightarrow{DA} = \begin{pmatrix} -10\\ 10\\ -5 \end{pmatrix}$
(c)	• ² finds \overrightarrow{DC} • ³ finds $\overrightarrow{DA}.\overrightarrow{DC}$ • ⁴ conclusion ans: proof (3 m • ¹ finds \overrightarrow{BA} and \overrightarrow{BC} • ² finds $\overrightarrow{BA}.\overrightarrow{BC}$ • ³ conclusion	(10) • $\overrightarrow{DC} = \begin{pmatrix} -7 \\ -6 \\ 2 \end{pmatrix}$ • $\overrightarrow{DA} \cdot \overrightarrow{DC} = 70 - 60 - 10 = 0$ • $\overrightarrow{DA} \cdot \overrightarrow{DC} = 0; \ \angle ADC \text{ is right angled}$ • $\overrightarrow{BA} = \begin{pmatrix} -4 \\ 4 \\ -2 \end{pmatrix} \overrightarrow{BC} = \begin{pmatrix} -1 \\ -12 \\ 5 \end{pmatrix}$ • $\overrightarrow{BA} \cdot \overrightarrow{BC} = 4 - 48 - 10 = -54$ • $\overrightarrow{BA} \cdot \overrightarrow{BC} = 4 - 48 - 10 = -54$

	Give 1 mark for each •	Illustration(s) for awarding each mark
10(a)	ans: proof (3 marks)	
	 ¹ applies given info to new function ² knows to substitute in function ³ simplifies to required form 	• $\cos^2 \frac{1}{2} x^\circ = \frac{1}{2} (\cos x^\circ + 1)$ • $6[\frac{1}{2} (\cos x^\circ + 1)] + \sqrt{3} \sin x^\circ$ • $3(\cos x + 1)] + \sqrt{3} \sin x^\circ; 3\cos x + 3 + \sqrt{3} \sin x^\circ$
(b)	ans: $\sqrt{12\cos(x-30)^{\circ}+3}$ (3 marks)	
	• ¹ finds k • ² finds tan α • ³ finds α	• $k = \sqrt{9+3} = \sqrt{12}$ • $\tan \alpha = \frac{\sqrt{3}}{3}$ • $\alpha = 30^{\circ}$
(c)	ans: 240° (4 marks) \bullet^1 equates to 0 \bullet^2 simplifies \bullet^3 finds values \bullet^4 discards	• $\sqrt{12\cos(x-30)^{\circ}+3} = 0$ • $\cos(x-30)^{\circ} = -\frac{3}{\sqrt{12}}$ • $x = 240^{\circ}; 360^{\circ}$ • 4240°
11(a)	ans: $P = 4t^{\frac{1}{2}}$ (3 marks) • ¹ knows form of equation, takes logs, expands • ² finds <i>b</i> • ³ writes relationship	• $y = ax^{b}; \log_{2} P = \frac{1}{2}\log_{2} t + 2$ • $b = \frac{1}{2}; \log_{2} a = 2; a = 2^{2}; a = 4$ • $P = 4t^{1/2}$
(b)	ans:proof(3 marks)•1subs into expression•2starts to simplify•3completes simplification to answer	• ¹ $4t^{\frac{1}{2}} = \sqrt{8} + 4$ • ² $t^{\frac{1}{2}} = \frac{1}{4}(\sqrt{8} + 4); t = [\frac{1}{4}(\sqrt{8} + 4)]^2$ • ³ $t = \frac{1}{16}(8 + 8\sqrt{8} + 16); t = \frac{1}{16}(24 + 16\sqrt{2})$ $t = \frac{24}{16} + \sqrt{2}; t = \frac{3}{2} + \frac{2\sqrt{2}}{2}; t = \frac{1}{2}(3 + 2\sqrt{2})$
12	ans: $a = -4$; $b = 3$ (4 marks) • 1 uses synthetic division to find one equation • 2 uses synthetic division to find other eq. • 3 knows to use system of equations • 4 solves for <i>a</i> and <i>b</i>	• $b - a = 7$ • $b + 3a = -9$ • $a = -4; b = 3$

	Give 1 mark for each •	Illustration(s) for awarding each mark
13(a)	ans: proof (3 marks)	
	 differentiates first term in brackets differentiates second term in brackets contracts 2 sin x cos x and simplifies 	• $\sqrt{3}(2\sin x \cos x)$ • $2\sin 2x)$ • $\sqrt{3}(\sin 2x + 2\sin 2x) = \sqrt{3}(3\sin 2x)$
(b)	ans: 9/2 (2 marks)	
	 ¹ subs into derivative ² evaluates 	• $\sqrt{3}(3\sin 2(\frac{\pi}{6});\sqrt{3}(3\sin \frac{\pi}{3}))$ • $\sqrt{3} \times 3 \times \frac{\sqrt{3}}{2} = \frac{9}{2}$
	Sect. B (34 marks)	16 + 34 Total: 50 marks