Section A - Answers

1	D
5	D

$\begin{array}{ll}2 & A \\ 6 & B\end{array}$
$\begin{array}{ll}3 & \text { B } \\ 7 & \text { B }\end{array}$
$\begin{array}{ll}4 & \text { C } \\ 8 & \text { D }\end{array}$
2 marks each (16 marks)

Section B - Marking Scheme

	Give 1 mark for each -	Illustration(s) for awarding each mark
$9(\mathbf{a})$ (b) (c)	ans: (11, - 10, 2) - ${ }^{1}$ valid method - ${ }^{2}$ answer ans: proof (4 marks) - ${ }^{1}$ finds $\overrightarrow{D A}$ - ${ }^{2}$ finds $\overrightarrow{\mathrm{DC}}$ -3 finds $\overrightarrow{\mathrm{DA}} \cdot \overrightarrow{D C}$ $\bullet{ }^{4}$ conclusion ans: proof (3 marks) - 1 finds $\overrightarrow{B A}$ and $\overrightarrow{B C}$ - 2 finds $\overrightarrow{B A} \cdot \overrightarrow{B C}$ \bullet^{3} conclusion	- ${ }^{1}$ evidence of using stepping out/section formula - ${ }^{2} \quad(11,-10,2)$ - $\quad \overrightarrow{\mathrm{DA}}=\left(\begin{array}{c}-10 \\ 10 \\ -5\end{array}\right)$ - $2 \quad \overrightarrow{\mathrm{DC}}=\left(\begin{array}{c}-7 \\ -6 \\ 2\end{array}\right)$ - ${ }^{3} \overrightarrow{\mathrm{DA}} \cdot \overrightarrow{\mathrm{DC}}=70-60-10=0$ - ${ }^{4}$ since $\overrightarrow{\mathrm{DAA}} \cdot \overrightarrow{\mathrm{DC}}=0 ; \angle \mathrm{ADC}$ is right angled - $\overrightarrow{\mathrm{BA}}=\left(\begin{array}{c}-4 \\ 4 \\ -2\end{array}\right) \quad \overrightarrow{\mathrm{BC}}=\left(\begin{array}{c}-1 \\ -12 \\ 5\end{array}\right)$ - $2 \overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}=4-48-10=-54$ - ${ }^{3}$ scalar product <0 so obtuse angle

\begin{tabular}{|c|c|c|}
\hline \& Give 1 mark for each - \& Illustration(s) for awarding each mark

\hline 10(a)

(b)

(c) \& \begin{tabular}{l}
ans: proof

- ${ }^{1}$ applies given info to new function

- ${ }^{2}$ knows to substitute in function

- 3 simplifies to required form

ans: $\sqrt{ } 12 \cos (x-30)^{0}+3$

(3 marks)

- ${ }^{1} \quad$ finds k

- ${ }^{2}$ finds $\tan \alpha$

- ${ }^{3}$ finds α

ans: 240°

(4 marks)

- ${ }^{1}$ equates to 0

- ${ }^{2}$ simplifies

- ${ }^{3}$ finds values

${ }^{-4}$ discards

 \&

- $\cos ^{2} \frac{1}{2} x^{\circ}=\frac{1}{2}\left(\cos x^{\circ}+1\right)$

- $26\left[\frac{1}{2}\left(\cos x^{\circ}+1\right)\right]+\sqrt{3} \sin x^{\circ}$

- $3(\cos x+1)]+\sqrt{3} \sin x^{\circ} ; 3 \cos x+3+\sqrt{3} \sin x^{\circ}$

- ${ }^{1} k=\sqrt{9+3}=\sqrt{12}$

- $\quad \tan \alpha=\frac{\sqrt{3}}{3}$

- ${ }^{3} \alpha=30^{\circ}$

- ${ }^{1} \sqrt{ } 12 \cos (x-30)^{\circ}+3=0$

- ${ }^{2} \quad \cos (x-30)^{\circ}=-\frac{3}{\sqrt{12}}$

- ${ }^{3} x=240^{\circ} ; 360^{\circ}$

- ${ }^{4} 240^{\circ}$
\end{tabular}

\hline | 11(a) |
| :--- |
| (b) | \& | ans: $P=4 t^{1 / 2}$ |
| :--- |
| (3 marks) |
| - ${ }^{1}$ knows form of equation, takes logs, expands |
| - ${ }^{2}$ finds b |
| $\bullet{ }^{3}$ writes relationship |
| ans: proof |
| (3 marks) |
| - ${ }^{1}$ subs into expression |
| - ${ }^{2}$ starts to simplify |
| - 3 completes simplification to answer | \& | - ${ }^{1} y=a x^{b} ; \log _{2} P=\frac{1}{2} \log _{2} t+2$ |
| :--- |
| -2 $b=\frac{1}{2} ; \log _{2} a=2 ; a=2^{2} ; a=4$ |
| -3 $P=4 t^{1 / 2}$ |
| -1 $4 t^{\frac{1}{2}}=\sqrt{8}+4$ |
| - $t^{\frac{1}{2}}=\frac{1}{4}(\sqrt{8}+4) ; t=\left[\frac{1}{4}(\sqrt{8}+4)\right]^{2}$ |
| -3 $t=\frac{1}{16}(8+8 \sqrt{8}+16) ; t=\frac{1}{16}(24+16 \sqrt{2})$ |
| $t=\frac{24}{16}+\sqrt{2} ; t=\frac{3}{2}+\frac{2 \sqrt{2}}{2} ; t=\frac{1}{2}(3+2 \sqrt{2})$ |

\hline 12 \& | ans: $\quad a=-4 ; b=3$ |
| :--- |
| (4 marks) |
| - ${ }^{1}$ uses synthetic division to find one equation |
| - ${ }^{2}$ uses synthetic division to find other eq. |
| -3 knows to use system of equations |
| - ${ }^{4} \quad$ solves for a and b | \& | - ${ }^{1} b-a=7$ |
| :--- |
| - $2 b+3 a=-9$ |
| - ${ }^{3}$ evidence |
| -4 $a=-4 ; b=3$ |

\hline
\end{tabular}

	Give 1 mark for each -	Illustration(s) for awarding each mark
$\mathbf{1 3 (a)}$ (b)	ans: proof (3 marks) - ${ }^{1}$ differentiates first term in brackets - ${ }^{2}$ differentiates second term in brackets - ${ }^{3}$ contracts $2 \sin x \cos x$ and simplifies ans: $\quad 9 / 2$ (2 marks) - ${ }^{1}$ subs into derivative - ${ }^{2}$ evaluates	- ${ }^{1} \quad \sqrt{3}(2 \sin x \cos x \ldots \ldots$. - $\left.{ }^{2}2 \sin 2 x\right)$ - $3 \sqrt{3(} \sin 2 x+2 \sin 2 x)=\sqrt{3}(3 \sin 2 x)$ - ${ }^{1} \sqrt{3}\left(3 \sin 2\left(\frac{\pi}{6}\right) ; \sqrt{3}\left(3 \sin \frac{\pi}{3}\right)\right.$ - $2 \sqrt{3} \times 3 \times \frac{\sqrt{3}}{2}=\frac{9}{2}$
	Sect. B (34 marks)	$16+34$ Total: 50 marks

