Mathematics

Higher Mini-Prelim Examination 2010/2011

NATIONAL

 QUALIFICATIONS
Assessing Unit 3 + revision from Units $1 \& 2$

Time allowed - 1 hour 10 minutes

Read carefully

1. Calculators may be used in this paper.
2. Full credit will be given only where the solution contains appropriate working.
3. Answers obtained from readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$.
The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Trigonometric formulae:

$$
\begin{aligned}
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B \\
\sin 2 A & =2 \sin A \cos A \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A
\end{aligned}
$$

Scalar Product: $\quad \boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \cos \theta$, where θ is the angle between \boldsymbol{a} and \boldsymbol{b}.
or

$$
\boldsymbol{a} \cdot \boldsymbol{b}=\boldsymbol{a}_{1} \boldsymbol{b}_{1}+\boldsymbol{a}_{2} \boldsymbol{b}_{2}+\boldsymbol{a}_{3} \boldsymbol{b}_{3} \text { where } \boldsymbol{a}=\left(\begin{array}{l}
\mathrm{a}_{1} \\
\mathrm{a}_{2} \\
\mathrm{a}_{3}
\end{array}\right) \text { and } \boldsymbol{b}=\left(\begin{array}{l}
\mathrm{b}_{1} \\
\mathrm{~b}_{2} \\
\mathrm{~b}_{3}
\end{array}\right)
$$

Table of standard derivatives:

$f(x)$	$f^{\prime}(x)$
$\sin a x$ $\cos a x$	$a \cos a x$ $-a \sin a x$

Table of standard integrals:

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+C$
$\cos a x$	$\frac{1}{a} \sin a x+C$

SECTION A

In this section the correct answer to each question is given by one of the alternatives $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}. Indicate the correct answer by writing $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D} opposite the number of the question on your answer paper.
Rough working may be done on the paper provided. 2 marks will be given for each correct answer.

1. If $f(x)=(2 x-1)^{4}$ then $f^{\prime}(1)$ equals

A $\quad 4$
B $\quad 1$
C 2
D 8
2. The maximum value of the function $g(x)=3 \sin x+2 \cos x$ is

A $\sqrt{13}$
B 5
C 0
D 2
3. The radius of the circle with equation $x^{2}+y^{2}+4 x-2 y=4$ is

A 2
B 3
C 1
D $\sqrt{24}$
4. If k is a constant of integration then $\int \sin 4 x d x$ is

A $\quad-\cos 4 x+k$
B $\quad 4 \cos 4 x+k$
C $\quad-\frac{1}{4} \cos 4 x+k$
D $\quad \frac{1}{4} \cos 4 x+k$
5. The value of $\log _{\sqrt{2}} 4$ is

A 2
B $\quad 4 \sqrt{2}$
C $\frac{1}{4}$
D 4
6. Given that the vectors $\left(\begin{array}{l}1 \\ 4 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}p \\ -2 \\ 3\end{array}\right)$ are perpendicular, the value of p is

A 0
B 8
C 4
D $\quad-6$
7. Part of the graph of $y=\log _{10} x$ is shown in each diagram below as a broken line.

Which diagram also shows, as a full line, part of the graph of $y=\log _{10} \frac{1}{x}$?
A

B

C

D

8. $\boldsymbol{a}=\left(\begin{array}{c}\frac{1}{2} \\ -\frac{1}{2} \\ g\end{array}\right)$ is a unit vector. Which of the following could be the value of g ?

A $\quad \frac{1}{2}$
B $\quad 1$
C $\quad-1$
D $\frac{1}{\sqrt{2}}$

SECTION B

ALL questions should be attempted

9. Triangle ABC has vertices $\mathrm{A}(1,0,-3), \mathrm{B}(5,-4,-1)$ and $\mathrm{C}(4,-16,4)$ respectively.
A, B and D are collinear such that $\frac{\mathrm{AB}}{\mathrm{BD}}=\frac{2}{3}$.

(a) Find the coordinates of D. 2
(b) Hence show clearly that angle ADC is a right angle.
(c) Prove that angle ABC is obtuse.
10. A function is defined as $f(x)=6 \cos ^{2} \frac{1}{2} x^{\circ}+\sqrt{3} \sin x^{\circ}$.
(a) By using the fact that $\cos ^{2} x^{\circ}=\frac{1}{2}\left(\cos 2 x^{\circ}+1\right)$ show clearly that this function can be expressed in the form

$$
\begin{equation*}
f(x)=3 \cos x^{\circ}+\sqrt{3} \sin x^{\circ}+3 . \tag{3}
\end{equation*}
$$

(b) Express $3 \cos x^{\circ}+\sqrt{3} \sin x^{\circ}+3$ in the form $k \cos (x-\alpha)^{\circ}+3$ where $0<\alpha<360$ and $k>0$.
(c) Hence solve the equation $f(x)=0$ for $200<x<360$.
11. The diagram, which is not drawn to scale, shows part of a graph of $\log _{2} P$ against $\log _{2} t$. The straight line has a gradient of $\frac{1}{2}$ and passes through the point $(0,2)$.

(a) Find an equation connecting t and P.
(b) Hence show clearly that when $P=\sqrt{8}+4, t$ takes the value $\frac{1}{2}(3+2 \sqrt{2})$
12. Given that $(x+1)$ and $(x-3)$ are both factors of $2 x^{3}-5 x^{2}+a x+b$, find a and b.
13. (a) Given that $y=\sqrt{3}\left(\sin ^{2} x-\cos 2 x\right)$, show clearly that

$$
\begin{equation*}
\frac{d y}{d x}=\sqrt{3}(3 \sin 2 x) \tag{3}
\end{equation*}
$$

(b) Hence find the gradient of the tangent to the curve $y=\sqrt{3}\left(\sin ^{2} x-\cos 2 x\right)$ at the point where $x=\frac{\pi}{6}$.

