Mathematics Higher Mini-Prelim Examination 2010/2011

NATIONAL QUALIFICATIONS

Assessing Unit 3 + revision from Units 1 & 2

Time allowed - 1 hour 10 minutes

Read carefully

- 1. Calculators may be used in this paper.
- 2. Full credit will be given only where the solution contains appropriate working.
- 3. Answers obtained from readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$. The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Trigonometric formulae:	$\sin(A\pm B) = \sin A\cos B \pm \cos A\sin B$
	$\cos(A\pm B) = \cos A\cos B \mp \sin A\sin B$
	$\sin 2A = 2\sin A \cos A$
	$\cos 2A = \cos^2 A - \sin^2 A$
	$= 2\cos^2 A - 1$
	$= 1 - 2\sin^2 A$

 $\boldsymbol{a} \cdot \boldsymbol{b} = |\boldsymbol{a}| |\boldsymbol{b}| \cos \theta$, where θ is the angle between \boldsymbol{a} and \boldsymbol{b} . Scalar Product:

or

$$\boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{a}_1 \boldsymbol{b}_1 + \boldsymbol{a}_2 \boldsymbol{b}_2 + \boldsymbol{a}_3 \boldsymbol{b}_3$$
 where $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$

Table of standard derivatives:

f(x)	f'(x)
$ \sin ax \\ \cos ax $	$a\cos ax$ - $a\sin ax$

Table of standard integrals:

f(x)	$\int f(x) dx$
sin ax	$-\frac{1}{a}\cos ax + C$
cos ax	$\frac{1}{a}\sin ax + C$

SECTION A

In this section the correct answer to each question is given by one of the alternatives **A**, **B**, **C** or **D**. Indicate the correct answer by writing **A**, **B**, **C** or **D** opposite the number of the question on your answer paper.

Rough working may be done on the paper provided. 2 marks will be given for each correct answer.

- 1. If $f(x) = (2x-1)^4$ then f'(1) equals
 - **A** 4
 - **B** 1
 - **C** 2
 - **D** 8

2. The maximum value of the function $g(x) = 3\sin x + 2\cos x$ is

- A $\sqrt{13}$
- **B** 5
- **C** 0
- **D** 2

3. The radius of the circle with equation $x^2 + y^2 + 4x - 2y = 4$ is

- **A** 2
- **B** 3
- **C** 1
- **D** $\sqrt{24}$

4. If k is a constant of integration then $\sin 4x \, dx$ is

- A $-\cos 4x + k$
- **B** $4\cos 4x + k$
- **C** $-\frac{1}{4}\cos 4x + k$
- **D** $\frac{1}{4}\cos 4x + k$
- 5. The value of $\log_{\sqrt{2}} 4$ is

 - **D** 4

6. Given that the vectors $\begin{pmatrix} 1 \\ 4 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} p \\ -2 \\ 3 \end{pmatrix}$ are perpendicular, the value of p is **A** 0 **B** 8 **C** 4 **D** -6

7. Part of the graph of $y = \log_{10} x$ is shown in each diagram below as a broken line. Which diagram also shows, as a full line, part of the graph of $y = \log_{10} \frac{1}{x}$?

A $\frac{1}{2}$ **B** 1 **C** -1 **D** $\frac{1}{\sqrt{2}}$

8.

[END OF SECTION A]

SECTION B ALL questions should be attempted

9. Triangle ABC has vertices A(1,0,-3), B(5,-4,-1) and C(4,-16,4) respectively.

A, B and D are collinear such that $\frac{AB}{BD} = \frac{2}{3}$.

(a)	Find the coordinates of D.	2
(b)	Hence show clearly that angle ADC is a right angle.	4
(c)	Prove that angle ABC is obtuse.	3

10. A function is defined as $f(x) = 6\cos^2 \frac{1}{2}x^\circ + \sqrt{3}\sin x^\circ$.

(a) By using the fact that $\cos^2 x^\circ = \frac{1}{2}(\cos 2x^\circ + 1)$ show clearly that this function can be expressed in the form

$$f(x) = 3\cos x^{\circ} + \sqrt{3}\sin x^{\circ} + 3.$$

3

4

(b) Express $3\cos x^\circ + \sqrt{3}\sin x^\circ + 3$ in the form $k\cos(x-\alpha)^\circ + 3$ where $0 < \alpha < 360$ and k > 0.

(c) Hence solve the equation f(x) = 0 for 200 < x < 360.

11. The diagram, which is not drawn to scale, shows part of a graph of $\log_2 P$ against $\log_2 t$. The straight line has a gradient of $\frac{1}{2}$ and passes through the point (0,2).

- (a) Find an equation connecting *t* and *P*.
- (b) Hence show clearly that when $P = \sqrt{8} + 4$, *t* takes the value $\frac{1}{2}(3+2\sqrt{2})$ **3**
- 12. Given that (x+1) and (x-3) are both factors of $2x^3 5x^2 + ax + b$, find a and b. 4

13. (a) Given that
$$y = \sqrt{3} (\sin^2 x - \cos 2x)$$
, show clearly that

$$\frac{dy}{dx} = \sqrt{3}(3\sin 2x).$$

(b) Hence find the gradient of the tangent to the curve $y = \sqrt{3} (\sin^2 x - \cos 2x)$ at the point where $x = \frac{\pi}{6}$.

2

3

[END OF SECTION B]

[END OF QUESTION PAPER]