DINGWALL ACADEMY

Mathematics

Higher Mini-Prelim Examination 2009/2010

NATIONAL QUALIFICATIONS

Assessing Unit 3 + revision from Units 1 & 2

Time allowed - 1 hour 10 minutes

Read carefully

- 1. Calculators may be used in this paper.
- 2. Full credit will be given only where the solution contains appropriate working.
- 3. Answers obtained from readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$.

The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Trigonometric formulae:

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$= 2\cos^2 A - 1$$

$$= 1 - 2\sin^2 A$$

Scalar Product:

 $a \cdot b = |a||b|\cos\theta$, where θ is the angle between a and b.

or

$$\boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{a}_1 \boldsymbol{b}_1 + \boldsymbol{a}_2 \boldsymbol{b}_2 + \boldsymbol{a}_3 \boldsymbol{b}_3$$
 where $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$

Table of standard derivatives:

f(x)	f'(x)
$\sin ax$ $\cos ax$	$a\cos ax$ $-a\sin ax$

Table of standard integrals:

f(x)	$\int f(x) dx$
$\sin ax$ $\cos ax$	$-\frac{1}{a}\cos ax + C$ $\frac{1}{a}\sin ax + C$

SECTION A

In this section the correct answer to each question is given by one of the alternatives **A**, **B**, **C** or **D**. Indicate the correct answer by writing **A**, **B**, **C** or **D** opposite the number of the question on your answer paper.

Rough working may be done on the paper provided. 2 marks will be given for each correct answer.

- 1. The function $f(x) = 2\sin x^{\circ} + \cos x^{\circ}$ has a **minimum** value of
 - $\mathbf{A} 2$
 - \mathbf{B} 0
 - \mathbf{C} -3
 - $\mathbf{D} \sqrt{5}$
- **2.** Which of the following is a correct assumption from the statement $\log_b a = c$?
 - **A** $a^c = b$
 - $\mathbf{B} \qquad c^a = b$
 - \mathbf{C} $b^c = a$
 - $\mathbf{D} \qquad c^b = a$
- 3. What is the value of $\int_0^{\pi} \sin x \ dx ?$
 - $\mathbf{A} 2$
 - \mathbf{B} +1
 - **C** + 2
 - \mathbf{D} 0
- **4.** P and Q have position vectors $\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}$ respectively.

The length of PQ is

- **A** 1
- $\mathbf{B} \qquad \sqrt{17}$
- \mathbf{C} $\sqrt{21}$
- \mathbf{D} $\sqrt{13}$

- 5. Given that $\cos P = \frac{1}{\sqrt{6}}$, where $0 , the value of <math>\cos 2P$ is
 - \mathbf{A} $\frac{1}{\sqrt{3}}$
 - $\mathbf{B} \qquad \frac{2}{\sqrt{6}}$
 - $\mathbf{C} \qquad \frac{\sqrt{5}}{\sqrt{6}}$
 - **D** $-\frac{2}{3}$
- 6. An equation is such that $\log x + \log(x+1) = \log 6$, where x > 0.

The value of x is

- **A** 2
- **B** 1
- **C** 3
- **D** 6
- 7. The gradient of the tangent to the curve $y = \sin x^{\circ}$ at the point where $x = \frac{\pi}{3}$ radians is
 - $\mathbf{A} \qquad \frac{\sqrt{3}}{2}$
 - **B** $\frac{1}{2}$
 - C $-\frac{1}{2}$
 - $\mathbf{D} = 0$
- 8. Vectors \boldsymbol{a} and \boldsymbol{b} are such that $|\boldsymbol{a}| = |\boldsymbol{b}| = 2$ with P being the angle between the vectors.

If $\boldsymbol{a} \cdot \boldsymbol{b} = 0.8$, the value of $\cos P$ is

- $\mathbf{A} \qquad 3 \cdot 2$
- $\mathbf{B} = 0.4$
- \mathbf{C} 0.2
- \mathbf{D} 0.05

SECTION B

ALL questions should be attempted

- 9. A function is defined on a suitable domain as $f(x) = \frac{-16}{(2x-1)^2}$.
 - (a) Show clearly that the derivative of this function can be written in the form

$$f'(x) = \frac{k}{(2x-1)^n}$$

and write down the values of k and n.

- (b) Hence find x when f'(x) = 1 and x > 0.
- 10. In the diagram below A, B and C have coordinates (-4,0,13), (6,-3,4) and (-6,1,12) respectively.

P lies on BC and has coordinates (-3,0,k)

- (a) Find the value of k.
- (b) Hence calculate the size of angle APB. 5
- 11. A formulae for mass decay is given as $M_t = M_0 e^{-0.02t}$, where t is time elapsed in hours, M_0 is the initial mass in grams and M_t is the mass remaining after t hours.

How long will it take for an initial mass of 40 grams to decay down to 28 grams? Give your answer correct to the nearest minute.

4

- 12. If $\frac{dy}{dx} = \sqrt{4x+1}$, find an expression for y in terms of x given that y = 9.5 when x = 2.
- 5

13. Part of the graph of $y = \sqrt{2} \cos x^{\circ} + \sqrt{2} \sin x^{\circ}$ is shown below.

- (a) Express $y = \sqrt{2}\cos x^{\circ} + \sqrt{2}\sin x^{\circ}$ in the form $y = k\cos(x a)^{\circ}$, where k > 0.
- (b) Hence state the coordinates of A and B rounding the coordinates to **3 significant figures** where necessary.
- (c) By solving the equation $\sqrt{2}\cos x^{\circ} + \sqrt{2}\sin x^{\circ} = 1.7$, find the coordinates of point C.

[END OF SECTION B]

[END OF QUESTION PAPER]