DINGWALL ACADEMY

Mathematics

NATIONAL

Higher Mini-Prelim Examination 2009/2010

Assessing Unit 3 + revision from Units 1 \& 2

Time allowed - 1 hour 10 minutes

Read carefully

1. Calculators may be used in this paper.
2. Full credit will be given only where the solution contains appropriate working.
3. Answers obtained from readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$.
The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Trigonometric formulae:

$$
\begin{aligned}
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B \\
\sin 2 A & =2 \sin A \cos A \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A
\end{aligned}
$$

Scalar Product: $\quad \boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \cos \theta$, where θ is the angle between \boldsymbol{a} and \boldsymbol{b}.
or

$$
\boldsymbol{a} \cdot \boldsymbol{b}=\boldsymbol{a}_{1} \boldsymbol{b}_{1}+\boldsymbol{a}_{2} \boldsymbol{b}_{2}+\boldsymbol{a}_{3} \boldsymbol{b}_{3} \text { where } \boldsymbol{a}=\left(\begin{array}{l}
\mathrm{a}_{1} \\
\mathrm{a}_{2} \\
\mathrm{a}_{3}
\end{array}\right) \text { and } \boldsymbol{b}=\left(\begin{array}{l}
\mathrm{b}_{1} \\
\mathrm{~b}_{2} \\
\mathrm{~b}_{3}
\end{array}\right)
$$

Table of standard derivatives:

$f(x)$	$f^{\prime}(x)$
$\sin a x$ $\cos a x$	$a \cos a x$ $-a \sin a x$

Table of standard integrals:

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+C$
$\cos a x$	$\frac{1}{a} \sin a x+C$

SECTION A

In this section the correct answer to each question is given by one of the alternatives $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}. Indicate the correct answer by writing $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D} opposite the number of the question on your answer paper.
Rough working may be done on the paper provided. 2 marks will be given for each correct answer.

1. The function $f(x)=2 \sin x^{\circ}+\cos x^{\circ}$ has a minimum value of

A $\quad-2$
B 0
C $\quad-3$
D $\quad-\sqrt{5}$
2. Which of the following is a correct assumption from the statement $\log _{b} a=c$?

A $\quad a^{c}=b$
B $\quad c^{a}=b$
C $\quad b^{c}=a$
D $\quad c^{b}=a$
3. What is the value of $\int_{0}^{\pi} \sin x d x$?

A $\quad-2$
B $\quad+1$
C +2
D 0
4. P and Q have position vectors $\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)$ and $\left(\begin{array}{c}3 \\ -1 \\ 2\end{array}\right)$ respectively.

The length of PQ is
A $\quad 1$
B $\sqrt{17}$
C $\sqrt{21}$
D $\sqrt{13}$
5. Given that $\cos P=\frac{1}{\sqrt{6}}$, where $0<p<\frac{\pi}{2}$, the value of $\cos 2 P$ is

A $\quad \frac{1}{\sqrt{3}}$
B $\quad \frac{2}{\sqrt{6}}$
C $\quad \frac{\sqrt{5}}{\sqrt{6}}$
D $\quad-\frac{2}{3}$
6. An equation is such that $\log x+\log (x+1)=\log 6$, where $x>0$.

The value of x is
A $\quad 2$
B $\quad 1$
C 3
D 6
7. The gradient of the tangent to the curve $y=\sin x^{\circ}$ at the point where $x=\frac{\pi}{3}$ radians is

A $\frac{\sqrt{3}}{2}$
B $\quad \frac{1}{2}$
C $\quad-\frac{1}{2}$
D 0
8. Vectors \boldsymbol{a} and \boldsymbol{b} are such that $|\boldsymbol{a}|=|\boldsymbol{b}|=2$ with P being the angle between the vectors. If $\boldsymbol{a} \cdot \boldsymbol{b}=0 \cdot 8$, the value of $\cos P$ is

A $\quad 3 \cdot 2$
B $\quad 0.4$
C $\quad 0.2$
D 0.05

SECTION B

ALL questions should be attempted

9. A function is defined on a suitable domain as $f(x)=\frac{-16}{(2 x-1)^{2}}$.
(a) Show clearly that the derivative of this function can be written in the form

$$
f^{\prime}(x)=\frac{k}{(2 x-1)^{n}}
$$

and write down the values of k and n.
(b) Hence find x when $f^{\prime}(x)=1$ and $x>0$.
10. In the diagram below A, B and C have coordinates $(-4,0,13),(6,-3,4)$ and $(-6,1,12)$ respectively.

P lies on BC and has coordinates ($-3,0, k$)

A ($-4,0,13$)
(a) Find the value of k. 3
(b) Hence calculate the size of angle APB.
11. A formulae for mass decay is given as $M_{t}=M_{0} e^{-0.02 t}$, where t is time elapsed in hours, M_{0} is the initial mass in grams and M_{t} is the mass remaining after t hours.

How long will it take for an initial mass of 40 grams to decay down to 28 grams?
Give your answer correct to the nearest minute.
12. If $\frac{d y}{d x}=\sqrt{4 x+1}$, find an expression for y in terms of x given that $y=9 \cdot 5$ when $x=2$.
13. Part of the graph of $y=\sqrt{2} \cos x^{\circ}+\sqrt{2} \sin x^{\circ}$ is shown below.

(a) Express $y=\sqrt{2} \cos x^{\circ}+\sqrt{2} \sin x^{\circ}$ in the form $y=k \cos (x-a)^{\circ}$, where $k>0$.
(b) Hence state the coordinates of A and B rounding the coordinates to $\mathbf{3}$ significant figures where necessary.
(c) By solving the equation $\sqrt{2} \cos x^{\circ}+\sqrt{2} \sin x^{\circ}=1 \cdot 7$, find the coordinates of point C .

