Higher Grade Paper - Unit 3 Mini-Prelim 2008/2009 (Answers + Marking Scheme)

Section A - Answers

1 C 5 D 2 B 6 D 3 C 7 C 4 B 8 A

2 marks each (16 marks)

Section B - Marking Scheme

	Give 1 mark for each ●	Illustration(s) for awarding each mark			
9(a)	ans: Q(2, 11, -2) (3 marks)				
	•¹ knows to use section formula	•¹ evidence			
	\bullet^2 uses section formula correctly	$\bullet^2 \frac{1}{3} \begin{pmatrix} 6\\33\\-6 \end{pmatrix} = \begin{pmatrix} 2\\11\\-2 \end{pmatrix}$			
	• 3 states coordinates of D	\bullet^3 Q(2, 11, -2)			
(b)	ans: proof (4 marks)				
	•¹ knows condition for perp. vectors	• if SQR is right – angled scalar prod. = 0			
	\bullet^2 finds \overrightarrow{QS}	$\bullet^2 \qquad \overrightarrow{QS} = \begin{pmatrix} 1 \\ 2 \\ 6 \end{pmatrix}$			
	\bullet^3 finds QR	$\bullet^3 \qquad \overrightarrow{QR} = \begin{pmatrix} 4 \\ -8 \\ 2 \end{pmatrix}$			
	• ⁴ finds scalar product	$\bullet^4 4-16+12=0 \text{ so right angle}$			
10	ans: 2 (5 marks)				
	•¹ prepares to integrate	$\bullet^1 \int_0^1 6(3-2x)^{-2} dx$			
	• integrates	$ \bullet^2 \frac{6(3-2x)^{-1}}{-1} \times \frac{1}{-2} $			
	• ³ simplifies	$\bullet^3 \qquad \left[\frac{3}{(3-2x)}\right]_0^1$			
	• substitutes values	$\bullet^4 \left[\frac{3}{(3-2(1))}\right] - \left[\frac{3}{(3-2(0))}\right]$			
	• ⁵ answer	• $5 - 2(1)$ [(3 - 2(0)]]			

	Give 1 mark for each ●	Illustration(s) for awarding each mark
11	ans: $69 \cdot 2^{\circ}$, $327 \cdot 6^{\circ}$ (6 marks) • 1 recognises wave form • 2 finds k • 3 finds α • 4 equates to 2 • 5 finds 1^{st} value • 6 finds 2^{nd} value ans: $(-1, 4)$ (4 marks)	• 1 evidence [eg. $k \cos(x - \alpha) = k \cos x \cos \alpha + k \sin x \sin \alpha$] • 2 $k = \sqrt{10}$ • 3 $\tan \alpha = \frac{1}{3}$; $\alpha = 18 \cdot 4^{\circ}$ Quadrant I • 4 $\sqrt{10} \cos(x - 18 \cdot 4)^{\circ} = 2$ • 5 $x = 69 \cdot 2^{\circ}$ • 6 $x = 327 \cdot 6^{\circ}$
	 knows to find derivative equates derivative to 1 solves for x and states correct x subs value and states coords. 	$ \bullet^{1} \frac{dy}{dx} = 3x^{2} - 2x - 4 $ $ \bullet^{2} 3x^{2} - 2x - 4 = 1 $ $ \bullet^{3} (3x - 5)(x + 1) = 0; x = -1 $ $ \bullet^{4} (-1)^{3} - (-1)^{2} - 4(-1) + 2 = 4; (-1, 4) $
13(a) (b)	 ans: proof (3 marks) ●¹ finds scalar product ●² finds magnitude of both vectors ●³ substitutes in formula and simplifies ans: 7/25 (2 marks) 	• $a \cdot b = 24 + 0 + 0 = 24$ • $ a = \sqrt{20}; b = \sqrt{45}$ • $\frac{24}{\sqrt{20}\sqrt{45}}$
	• 1 chooses replacement for $\cos 2\theta$ and subs • 2 answer	• $\cos 2\theta = 2\cos^2 \theta - 1 = 2(\frac{4}{5})^2 - 1$ • $\frac{7}{25}$

	Give 1 mark for each		Illustration(s) for awarding each mark
14(a)	ans: -0.00045 • 1 substitutes into formula • 2 takes natural logs of both sides • 3 releases power • 4 evaluates for k • 5 correct rounding	(5 marks)	• 1 $0 \cdot 8 = e^{500k}$ • 2 $\log_{e} 0 \cdot 8 = \log_{e} e^{500k}$ • 3 $\log_{e} 0 \cdot 8 = 500k \log_{e} e$ • 4 $k = \frac{\log_{e} 0 \cdot 8}{500}$ • 5 $-0.000446 = -0.00045$
(b)	 ans: 11% remains substitutes into formula evaluates 	(2 marks)	$ \bullet^{1} m_{t} = 100e^{-0.0004465000} \\ \bullet^{2} 11 $
			Sect. B (34 marks) 16 + 34 Total: 50 marks