Higher Grade Paper - Unit 3 Mini-Prelim 2008/2009 (Answers + Marking Scheme)
Section A - Answers

1	C	2	B
5	D	6	D

$\begin{array}{ll}3 & C \\ 7 & C\end{array}$
4 B
8 A
2 marks each (16 marks)
Section B - Marking Scheme

\begin{tabular}{|c|c|c|}
\hline \& Give 1 mark for each - \& Illustration(s) for awarding each mark \\
\hline 9(a)

(b) \& \begin{tabular}{l}
ans: $\quad Q(2,11,-2)$ \\
(3 marks) \\
- ${ }^{1}$ knows to use section formula \\
- ${ }^{2}$ uses section formula correctly \\
-3 states coordinates of D \\
ans: proof \\
(4 marks) \\
- ${ }^{1}$ knows condition for perp. vectors \\
- ${ }^{2} \quad$ finds $\overrightarrow{Q S}$ \\
- ${ }^{3}$ finds $\overrightarrow{\mathrm{QR}}$ \\
- ${ }^{4}$ finds scalar product

 \&

- ${ }^{1}$ evidence \\
- $\frac{1}{3}\left(\begin{array}{c}6 \\ 33 \\ -6\end{array}\right)=\left(\begin{array}{c}2 \\ 11 \\ -2\end{array}\right)$ \\
- ${ }^{3} \quad \mathrm{Q}(2,11,-2)$ \\
- ${ }^{1} \quad$ if $S Q R$ is right - angled scalar prod. $=0$ \\
- $\overrightarrow{Q S}=\left(\begin{array}{l}1 \\ 2 \\ 6\end{array}\right)$ \\
- $3 \quad \overrightarrow{Q R}=\left(\begin{array}{l}4 \\ -8 \\ 2\end{array}\right)$ \\
- $4-4-16+12=0$ so right angle
\end{tabular} \\

\hline 10 \& | ans: 2 |
| :--- |
| - ${ }^{1}$ prepares to integrate |
| - ${ }^{2}$ integrates |
| - ${ }^{3}$ simplifies |
| - ${ }^{4}$ substitutes values |
| - ${ }^{5}$ answer | \& | - $\int_{0}^{1} 6(3-2 x)^{-2} d x$ |
| :--- |
| - $2 \quad \frac{6(3-2 x)^{-1}}{-1} \times \frac{1}{-2}$ |
| -3 $\left[\frac{3}{(3-2 x)}\right]_{0}^{1}$ |
| - $\left.4 \frac{3}{(3-2(1))}\right]-\left[\frac{3}{(3-2(0)}\right]$ |
| - $5 \quad 3-1=2$ | \\

\hline
\end{tabular}

	Give 1 mark for each -	Illustration(s) for awarding each mark
11	ans: $\mathbf{6 9 \cdot 2} \mathbf{2}^{\circ}, \mathbf{3 2 7} \cdot \mathbf{6}^{\circ}$ (6 marks) - ${ }^{1}$ recognises wave form - ${ }^{2} \quad$ finds k - ${ }^{3}$ finds α - ${ }^{4}$ equates to 2 - ${ }^{5}$ finds $1^{\text {st }}$ value - ${ }^{6}$ finds $2^{\text {nd }}$ value	- ${ }^{1}$ evidence [eg. $k \cos (x-\alpha)=k \cos x \cos \alpha+k \sin x \sin \alpha]$ - ${ }^{2} \quad k=\sqrt{ } 10$ - $\quad \tan \alpha=\frac{1}{3} ; \alpha=18 \cdot 4^{\circ}$ Quadrant I - ${ }^{4} \sqrt{10} \cos (x-18 \cdot 4)^{\circ}=2$ - ${ }^{5} x=69 \cdot 2^{\circ}$ - ${ }^{6} \quad x=327 \cdot 6^{\circ}$
12	ans: $(-1,4)$ (4 marks) -1 knows to find derivative - ${ }^{2}$ equates derivative to 1 - ${ }^{3}$ solves for x and states correct x - ${ }^{4}$ subs value and states coords.	- $\frac{d y}{d x}=3 x^{2}-2 x-4$ - ${ }^{2} \quad 3 x^{2}-2 x-4=1$ - ${ }^{3} \quad(3 x-5)(x+1)=0 ; x=-1$ - ${ }^{4}(-1)^{3}-(-1)^{2}-4(-1)+2=4 ;(-1,4)$
13(a) (b)	ans: proof (3 marks) - ${ }^{1}$ finds scalar product - ${ }^{2}$ finds magnitude of both vectors - ${ }^{3}$ substitutes in formula and simplifies ans: $\frac{7}{25}$ (2 marks) - ${ }^{1}$ chooses replacement for $\cos 2 \theta$ and subs - ${ }^{2}$ answer	- ${ }^{1} \boldsymbol{a} \cdot \boldsymbol{b}=24+0+0=24$ $\bullet^{2} \quad\|\boldsymbol{a}\|=\sqrt{20} ;\|\boldsymbol{b}\|=\sqrt{45}$ - $3 \frac{24}{\sqrt{20} \sqrt{45}}$ - $\quad \cos 2 \theta=2 \cos ^{2} \theta-1=2\left(\frac{4}{5}\right)^{2}-1$ - ${ }^{2} \frac{7}{25}$

	Give 1 mark for each	Illustration(s) for awarding each mark
14(a) (b)	ans: $\quad \mathbf{0 . 0 0 0 4 5}$ - ${ }^{1}$ substitutes into formula - ${ }^{2}$ takes natural logs of both sides - ${ }^{3}$ releases power - ${ }^{4} \quad$ evaluates for k -5 correct rounding ans: 11% remains (2 marks) - ${ }^{1}$ substitutes into formula - ${ }^{2}$ evaluates	- ${ }^{1} 0 \cdot 8=e^{500 k}$ - ${ }^{2} \log _{e} 0 \cdot 8=\log _{e} e^{500 k}$ - ${ }^{3} \log _{e} 0 \cdot 8=500 k \log _{e} e$ -4 $k=\frac{\log _{e} 0 \cdot 8}{500}$ $\bullet^{5}-0 \cdot 000446=-0 \cdot 00045$ - $m_{t}=100 e^{-0.0004465000}$ - 11
		Sect. B (34 marks)

