DINGWALL ACADEMY

Mathematics
 Higher Mini-Prelim Examination 2008/2009

Assessing Unit 3 + revision from Units 1 \& 2

Time allowed - 1 hour 10 minutes

Read carefully

1. Calculators may be used in this paper.
2. Full credit will be given only where the solution contains appropriate working.
3. Answers obtained from readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$.
The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Trigonometric formulae:

$$
\begin{aligned}
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B \\
\sin 2 A & =2 \sin A \cos A \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A
\end{aligned}
$$

Scalar Product: $\quad \boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \cos \theta$, where θ is the angle between \boldsymbol{a} and \boldsymbol{b}.
or

$$
\boldsymbol{a} \cdot \boldsymbol{b}=\boldsymbol{a}_{1} \boldsymbol{b}_{1}+\boldsymbol{a}_{2} \boldsymbol{b}_{2}+\boldsymbol{a}_{3} \boldsymbol{b}_{3} \text { where } \boldsymbol{a}=\left(\begin{array}{l}
\mathrm{a}_{1} \\
\mathrm{a}_{2} \\
\mathrm{a}_{3}
\end{array}\right) \text { and } \boldsymbol{b}=\left(\begin{array}{l}
\mathrm{b}_{1} \\
\mathrm{~b}_{2} \\
\mathrm{~b}_{3}
\end{array}\right)
$$

Table of standard derivatives:

$f(x)$	$f^{\prime}(x)$
$\sin a x$ $\cos a x$	$a \cos a x$ $-a \sin a x$

Table of standard integrals:

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+C$
$\cos a x$	$\frac{1}{a} \sin a x+C$

SECTION A

In this section the correct answer to each question is given by one of the alternatives $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}. Indicate the correct answer by writing $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D} opposite the number of the question on your answer paper.
Rough working may be done on the paper provided. 2 marks will be given for each correct answer.

1. A is the point $(-4,6,5)$ and B is the point $(-1,3,2)$. The components of $\overrightarrow{\mathrm{AB}}$ are
A $\quad\left(\begin{array}{c}-3 \\ 3 \\ 3\end{array}\right)$
B $\quad\left(\begin{array}{c}-5 \\ 9 \\ 7\end{array}\right)$
C $\quad\left(\begin{array}{c}3 \\ -3 \\ -3\end{array}\right)$
D $\quad\left(\begin{array}{c}5 \\ -9 \\ -7\end{array}\right)$
2. The gradient of the tangent to the curve $y=3 \sin 2 x$ at the point where $x=\frac{\pi}{6}$ is

A $\quad 3 \sqrt{3}$
B 3
C $\quad-3$
D $\quad-3 \sqrt{3}$
3. The circle $x^{2}+y^{2}+11 x+7 y+10=0$ cuts the x-axis at the points P and Q .

The length of $P Q$ is
A 3
B $\quad 7$
C $\quad 9$
D 11
4. Given that C is a constant of integration, then $\int(4 x+3)^{-\frac{1}{2}} d x$ equals

A $\quad(4 x+3)^{\frac{1}{2}}+C$
B $\quad \frac{1}{2}(4 x+3)^{\frac{1}{2}}+C$
C $\quad \frac{1}{4}(4 x+3)^{\frac{1}{2}}+C$
D $\quad-2(4 x+3)^{-\frac{3}{2}}+C$
5. The derivative of $(3-4 x)^{3}$ with respect to x is

A $\quad-\frac{(3-4 x)^{4}}{16}$
B $\quad \frac{(3-4 x)^{4}}{4}$
C $\quad-(3-4 x)^{4}$
D $\quad-12(3-4 x)^{2}$
6. Vector \boldsymbol{a} has components $\boldsymbol{a}=\left(\begin{array}{c}3 \\ -2 \\ k\end{array}\right)$.

If $|\boldsymbol{a}|=4$, then the value of k is
A 3
B $\quad-1$
C $\quad-13$
D $\quad \sqrt{3}$
7. Solve $\log _{3} 3 x+\log _{3} x=3$, for x where $x>0$.

A $\quad 1$
B $\frac{27}{4}$
C 3
D $\frac{3}{4}$
8. The maximum value of $3 \sin x-4 \cos x+5$ is

A $\quad 10$
B 0
C 4
D -5

SECTION B

ALL questions should be attempted

9. Consider the diagram below.

(a) Given that Q divides PR in the ratio 1:2, find the coordinates of Q .
(b) Hence prove that angle SQR is a right angle.
10. Evaluate $\int_{0}^{1} \frac{6}{(3-2 x)^{2}} d x$.
11. Solve the equation $\sin x^{\circ}+3 \cos x^{\circ}=2$ for $0<x \leq 360$.
12. Find the coordinates of the point on the curve $y=x^{3}-x^{2}-4 x+2$ where the gradient of the tangent is 1 and $x<0$.
13. The diagram shows two vectors \boldsymbol{a} and \boldsymbol{b} where $\boldsymbol{a}=\left(\begin{array}{l}4 \\ 0 \\ 2\end{array}\right)$ and $\boldsymbol{b}=\left(\begin{array}{c}6 \\ -3 \\ 0\end{array}\right)$.

The angle between the vectors is θ.

(a) Show clearly that $\cos \theta=\frac{4}{5}$.
(b) Hence, or otherwise, find the exact value of $\cos 2 \theta$.
14. The mass of radium- 226 remaining after a decay period of t years can be calculated using the formula
$M_{t}=M_{0} e^{k t}$, where M_{0} is the initial mass, M_{t} is the mass remaining after t years and k is a constant.
(a) Find the value of the constant k, given that a sample of radium- 226 takes 500 years to decay to $\mathbf{8 0 \%}$ of its initial mass.
Give your answer correct to 2 significant figures.
(b) Hence calculate the approximate percentage mass remaining, of a sample of radium-226, after a period of 5 thousand years.
Give your answer correct to the nearest percent.

