DINGWALL ACADEMY

Mathematics Higher Mini-Prelim Examination 2008/2009 NATIONAL QUALIFICATIONS

Assessing Unit 3 + revision from Units 1 & 2

Time allowed - 1 hour 10 minutes

Read carefully

- 1. Calculators may be used in this paper.
- 2. Full credit will be given only where the solution contains appropriate working.
- 3. Answers obtained from readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$. The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Trigonometric formulae: $\begin{aligned}
\sin(A \pm B) &= \sin A \cos B \pm \cos A \sin B \\
\cos(A \pm B) &= \cos A \cos B \mp \sin A \sin B \\
\sin 2A &= 2\sin A \cos A \\
\cos 2A &= \cos^2 A - \sin^2 A \\
&= 2\cos^2 A - 1 \\
&= 1 - 2\sin^2 A
\end{aligned}$

Scalar Product: $a \cdot b = |a| |b| \cos \theta$, where θ is the angle between a and b.

or

$$\boldsymbol{a} \cdot \boldsymbol{b} = \boldsymbol{a}_1 \boldsymbol{b}_1 + \boldsymbol{a}_2 \boldsymbol{b}_2 + \boldsymbol{a}_3 \boldsymbol{b}_3$$
 where $\boldsymbol{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$

Table of standard derivatives:

f(x)	f'(x)
sin ax	$a\cos ax$
cos ax	$-a\sin ax$

Table of standard integrals:

f(x)	$\int f(x) dx$
$\sin ax$ $\cos ax$	$-\frac{1}{a}\cos ax + C$ $\frac{1}{a}\sin ax + C$

SECTION A

In this section the correct answer to each question is given by one of the alternatives **A**, **B**, **C** or **D**. Indicate the correct answer by writing **A**, **B**, **C** or **D** opposite the number of the question on your answer paper.

Rough working may be done on the paper provided. 2 marks will be given for each correct answer.

1. A is the point (-4, 6, 5) and B is the point (-1, 3, 2). The components of \overrightarrow{AB} are

A	$\begin{pmatrix} -3\\3\\3 \end{pmatrix}$	В	$\begin{pmatrix} -5\\9\\7 \end{pmatrix}$
С	$\begin{pmatrix} 3\\ -3\\ -3 \end{pmatrix}$	D	$\begin{pmatrix} 5\\ -9\\ -7 \end{pmatrix}$

- 2. The gradient of the tangent to the curve $y = 3\sin 2x$ at the point where $x = \frac{\pi}{6}$ is
 - A $3\sqrt{3}$
 - **B** 3
 - **C** -3
 - **D** $-3\sqrt{3}$
- 3. The circle $x^2 + y^2 + 11x + 7y + 10 = 0$ cuts the *x*-axis at the points P and Q. The length of PQ is
 - **A** 3
 - **B** 7
 - **C** 9
 - **D** 11

4. Given that C is a constant of integration, then $\int (4x+3)^{-\frac{1}{2}} dx$ equals

- A $(4x+3)^{\frac{1}{2}} + C$ B $\frac{1}{2}(4x+3)^{\frac{1}{2}} + C$ C $\frac{1}{4}(4x+3)^{\frac{1}{2}} + C$
- **D** $-2(4x+3)^{-\frac{3}{2}} + C$

5. The derivative of $(3-4x)^3$ with respect to x is

A
$$-\frac{(3-4x)^4}{16}$$

B $\frac{(3-4x)^4}{4}$
C $-(3-4x)^4$

D
$$-12(3-4x)^2$$

6. Vector **a** has components
$$\mathbf{a} = \begin{pmatrix} 3 \\ -2 \\ k \end{pmatrix}$$
.

If
$$|a|=4$$
, then the value of k is
A 3
B -1
C -13
D $\sqrt{3}$

7. Solve
$$\log_3 3x + \log_3 x = 3$$
, for x where $x > 0$.
A 1
B $\frac{27}{4}$

- $\begin{array}{c} \mathbf{C} & \mathbf{3} \\ \mathbf{D} & \frac{3}{4} \end{array}$

8. The maximum value of $3\sin x - 4\cos x + 5$ is

- **A** 10
- **B** 0
- **C** 4
- **D** -5

[END OF SECTION A]

SECTION B ALL questions should be attempted

9. Consider the diagram below.

(a) Given that Q divides PR in the ratio 1:2, find the coordinates of Q.
(b) Hence prove that angle SQR is a right angle.
4

10. Evaluate
$$\int_{0}^{1} \frac{6}{(3-2x)^2} dx$$
. 5

11. Solve the equation $\sin x^\circ + 3\cos x^\circ = 2$ for $0 < x \le 360$. 6

12. Find the coordinates of the point on the curve $y = x^3 - x^2 - 4x + 2$ where the gradient of the tangent is 1 and x < 0.

4

13. The diagram shows two vectors **a** and **b** where $\mathbf{a} = \begin{pmatrix} 4 \\ 0 \\ 2 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 6 \\ -3 \\ 0 \end{pmatrix}$.

The angle between the vectors is θ .

- (a) Show clearly that $\cos \theta = \frac{4}{5}$.
- (b) Hence, or otherwise, find the exact value of $\cos 2\theta$.
- 14. The mass of radium-226 remaining after a decay period of t years can be calculated using the formula RADIUM226 $M_t = M_0 e^{kt}$, where M_0 is the initial mass, M_t is the mass remaining after t years and k is a constant. Find the value of the constant k, given that a sample of radium-226 takes (a) 500 years to decay to 80% of its initial mass. Give your answer correct to 2 significant figures. 5 (b) Hence calculate the approximate percentage mass remaining, of a sample of radium-226, after a period of 5 thousand years. Give your answer correct to the nearest percent. 2

3

2

[END OF SECTION B]

[END OF QUESTION PAPER]