Dingwall Academy

Mathematics
 Higher Mini-Prelim Examination 2007/2008

NATIONAL
QUALIFICATIONS

Assessing Unit 3 + revision from Units 1 \& 2

Time allowed - $\mathbf{1}$ hour 10 minutes

Read carefully

1. Calculators may be used in this paper.
2. Full credit will be given only where the solution contains appropriate working.
3. Answers obtained from readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$.
The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Trigonometric formulae:

$$
\begin{aligned}
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B \\
\sin 2 A & =2 \sin A \cos A \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A
\end{aligned}
$$

Scalar Product: $\quad \boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \cos \theta$, where θ is the angle between \boldsymbol{a} and \boldsymbol{b}.
or

$$
\boldsymbol{a} \cdot \boldsymbol{b}=\boldsymbol{a}_{1} \boldsymbol{b}_{1}+\boldsymbol{a}_{2} \boldsymbol{b}_{2}+\boldsymbol{a}_{3} \boldsymbol{b}_{3} \text { where } \boldsymbol{a}=\left(\begin{array}{l}
\mathrm{a}_{1} \\
\mathrm{a}_{2} \\
\mathrm{a}_{3}
\end{array}\right) \text { and } \boldsymbol{b}=\left(\begin{array}{l}
\mathrm{b}_{1} \\
\mathrm{~b}_{2} \\
\mathrm{~b}_{3}
\end{array}\right)
$$

Table of standard derivatives:

$f(x)$	$f^{\prime}(x)$
$\sin a x$ $\cos a x$	$a \cos a x$ $-a \sin a x$

Table of standard integrals:

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+C$
$\cos a x$	$\frac{1}{a} \sin a x+C$

SECTION A

In this section the correct answer to each question is given by one of the alternatives $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}. Indicate the correct answer by writing $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D} opposite the number of the question on your answer paper.
Rough working may be done on the paper provided. 2 marks will be given for each correct answer.

1. A vector is defined as

$$
\mathbf{v}=\left(\begin{array}{c}
2 \\
0 \\
\sqrt{5}
\end{array}\right)
$$

The magnitude of this vector is
A 3
B $2+\sqrt{5}$
C $\quad 9$
D unknown
2. $\int_{0}^{\frac{\pi}{2}} \cos 2 x d x$ is equal to

A $\quad \frac{1}{2}$
B $\quad-1$
C 0
D 2
3. The maximum value of $2 \cos x-3 \sin x$ is

A 5
B $\quad-1$
C $\sqrt{5}$
D $\sqrt{13}$
4. The exact value of $\log _{9} 27$ is

A $\quad \frac{1}{3}$
B $\frac{2}{3}$
C $\frac{3}{2}$
D 3
5. A quadratic function f, where $f(x)=a x^{2}+b x+c$, is such that $a<0$ and $b^{2}-4 a c<0$.
Which of the following could be a possible sketch of the graph of this function?
A

B

C

D

6. What value of x makes the vectors

$$
\begin{aligned}
& \left(\begin{array}{c}
-2 \\
4 \\
10
\end{array}\right) \text { and }\left(\begin{array}{c}
-3 \\
6 \\
x
\end{array}\right) \text { perpendicular to each other? } \\
& \text { A } \quad 15 \\
& \text { B } \quad-3 \\
& \text { C } \quad 9 \\
& \text { D } \quad \text { no possible value }
\end{aligned}
$$

7. If $f(x)=\sin ^{3} x$ then $f^{\prime}(x)$ equals

A $\quad 3 \sin ^{2} x$
B $\quad 3 \cos ^{2} x$
C $\quad 3 \sin ^{2} x \cos x$
D $-3 \sin ^{2} x \cos x$
8. The graph of $y=\log _{2} x$ cuts the x-axis at

A	$(0,0)$
B	$(1,0)$
C	$(2,0)$
D	$(0,1)$

ALL questions should be attempted

9. Triangle ABC has vertices $\mathrm{A}(4,-1,2), \mathrm{B}(13,2,-10)$ and $\mathrm{C}(15,3,-5)$ as shown.

Point D lies on side AB .

(a) Given that D divides the line AB in the ratio 2:1, find the coordinates of D.
(b) Hence calculate the size of angle CDA.
10. Given $f(x)=\frac{9}{1-4 x}$ where $x \neq \frac{1}{4}$, find the value of $f^{\prime}(1)$.
11. The noise level, N decibels, emitting from a siren as it slowly gains and loses volume is given by the formula

$$
N=2 \cos t^{\circ}+4 \sqrt{2} \sin t^{\circ}+30
$$

where t is the time elapsed, in seconds, from switch on.

(a) Express N in the form $N=k \sin (t+\alpha)^{\circ}+30$, where $k>0$ and $0 \leq \alpha \leq 90$.
(b) Hence calculate how many seconds the siren takes to first reach a noise level of 34 decibels.
Give your answer correct to $\mathbf{3}$ significant figures.
12. (a) Given that $3 \log _{x} y=\log _{x} y^{2}+2$, find a relationship connecting x and y.
(b) Hence find the two values of y when $x=y-2$.
13. (a) A linear function, f, is such that $f(-1)=-3$ and $f(4)=7$.

Find a formula for this function in terms of x.
(b) Given that a second function, g, has as its formula $g(x)=x^{3}$, evaluate

$$
\int_{1}^{2}[g(f(x))] d x
$$

