

2013 Mathematics

Higher

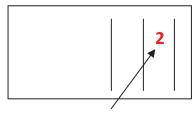
Finalised Marking Instructions

© Scottish Qualifications Authority 2013

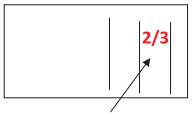
The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Assessment team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Assessment team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.


General Comments

These marking instructions are for use with the 2013 Higher Mathematics Examination.


For each question the marking instructions are in two sections, namely **Illustrative Scheme** and **Generic** Scheme. The **Illustrative Scheme** covers methods which are commonly seen throughout the marking. The Generic Scheme indicates the rationale for which each mark is awarded. In general markers should use the **Illustrative Scheme** and only use the **Generic Scheme** where a candidate has used a method not covered in the **Illustrative Scheme**.

All markers should apply the following general marking principles throughout their marking:

- 1 Marks must be assigned in accordance with these marking instructions. In principle, marks are awarded for what is correct, rather than deducted for what is wrong.
- 2 Award one mark for each •. There are **no** half marks.
- **3** The mark awarded for **each part** of a question should be entered in the **outer** right hand margin, opposite the end of the working concerned. The marks should correspond to those on the question paper and these marking instructions. Only the mark, **as a whole number**, should be written.

Marks in this column whole numbers only

Do not record marks on scripts in this manner.

- 4 Where a candidate has not been awarded any marks for an attempt at a question, or part of a question, 0 should be written in the right hand margin against their answer. It should not be left blank. If absolutely no attempt at a question, or part of a question, has been made, ie a completely empty space, then NR should be written in the outer margin.
- **5** Every page of a candidate's script should be checked for working. Unless blank, every page which is devoid of a marking symbol should have a tick placed in the bottom right hand margin.
- 6 Where the solution to part of a question is fragmented and continues later in the script, the marks should be recorded at the end of the solution. This should be indicated with a down arrow (ψ), in the margin, at the earlier stages.
- 7 Working subsequent to an error must be **followed through**, with possible full marks for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working for a follow through mark has been eased, the follow through mark cannot be awarded.
- 8 As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Throughout this paper, unless specifically mentioned in the marking instructions, a correct answer with no working receives no credit.

9 Marking Symbols

No comments or words should be written on scripts. Please use the following symbols and those indicated on the welcome letter and from comment 6 on the previous page.

A tick should be used where a piece of working is correct and gains a mark. Markers must check through the whole of a response, ticking the work only where a mark is awarded.

At the point where an error occurs, the error should be underlined and a cross used to indicate where a mark has not been awarded. If no mark is lost the error should only be underlined, i.e. a cross is only used where a mark is not awarded.

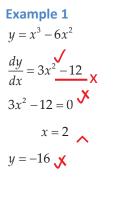
A cross-tick should be used to indicate "correct" working where a mark is awarded as a result of **follow through** from an error.

A double cross-tick should be used to indicate correct working which is irrelevant or insufficient to score any marks. This should also be used for working which has been **eased**.

A tilde should be used to indicate a minor error which is not being penalised, e.g. **bad** form.

This should be used where a candidate is given the **benefit of the doubt**.

A roof should be used to show that something is missing, such as part of a solution or a crucial step in the working.


These will help markers to maintain consistency in their marking and essential for the later stages of SQA procedures.

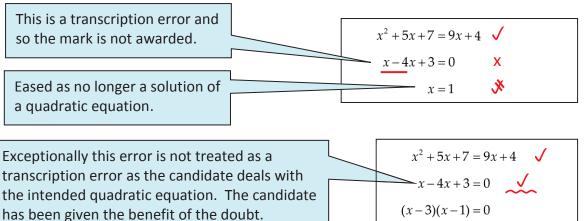
The examples below illustrate the use of the marking symbols .

² X

•4 🔨

•5 🗡

Example 3


 $3\sin x - 5\cos x$ $k\sin x \cos a - \cos x \sin a \checkmark \bullet^{1}$ $k\cos a = 3, k\sin a = 5 \checkmark \bullet^{2}$

Example 2 A(4,4,0), B(2,2,6), C(2,2,0) $\overrightarrow{AB} = \underline{b} + \underline{a} = \begin{pmatrix} 6 \\ 6 \\ 6 \end{pmatrix}_{X \bullet^{1}}$ $\overrightarrow{AC} = \begin{pmatrix} 6 \\ 6 \\ 0 \end{pmatrix}_{X \bullet^{2}}$ (repeated error)

Example 4

 $4 \begin{bmatrix} 1 & -5 & 2 & 8 & \checkmark & \bullet^{1} \\ 4 & -4 & -8 \\ 1 & 1 & -2 & 0 & \checkmark & \bullet^{2} \end{bmatrix}$ Since the remainder is 0, x - 4 must be a factor. $\checkmark & \bullet^{3} (x^{2} - x - 2) & \checkmark & \bullet^{4} (x - 4)(x + 1)(x - 2) & \checkmark & \bullet^{5} \\ x = 4 \text{ or } x = -1 \text{ or } x = 2 & \checkmark & \bullet^{6} \end{bmatrix}$ Page 3

- 10 In general, as a consequence of an error perceived to be trivial, casual or insignificant, e.g. $6 \times 6 = 12$, candidates lose the opportunity of gaining a mark. But note example 4 in comment 9 and the second example in comment 11.
- **11** Where a transcription error (paper to script or within script) occurs, the candidate should be penalised, e.g.

12 Cross marking

Where a question results in two pairs of solutions, this technique should be applied, but only if indicated in the detailed marking instructions for the question.

x = 1 or 3

Example: Point of intersection of line with curve

 Illustrative Scheme:
 • 5 x = 2, x = -4 Cross marked:
 • 5 x = 2, y = 5

 • 6 y = 5, y = -7 • 6 x = -4, y = -7

Markers should choose whichever method benefits the candidate, but **not** a combination of both.

13 In final answers, numerical values should be simplified as far as possible.

Examples:	$\frac{15}{12}$ should be simplified to $\frac{5}{4}$ or $1\frac{1}{4}$	$\frac{43}{1}$ should be simplified to 43
	$\frac{15}{0.3}$ should be simplified to 50	$\frac{\frac{4}{5}}{3}$ should be simplified to $\frac{4}{15}$
	$\sqrt{64}$ must be simplified to 8	The square root of perfect squares up to and including 100 must be known.

- 14 Regularly occurring responses (ROR) are shown in the marking instructions to help mark common and/or non-routine solutions. RORs may also be used as a guide in marking similar non-routine candidate responses.
- **15** Unless specifically mentioned in the marking instructions, the following should not be penalised:
 - Working subsequent to a correct answer;
 - Correct working in the wrong part of a question;
 - Legitimate variations in numerical answers, e.g. angles in degrees rounded to nearest degree;
 - Omission of units;
 - Bad form;
 - Repeated error within a question, but not between questions or papers.

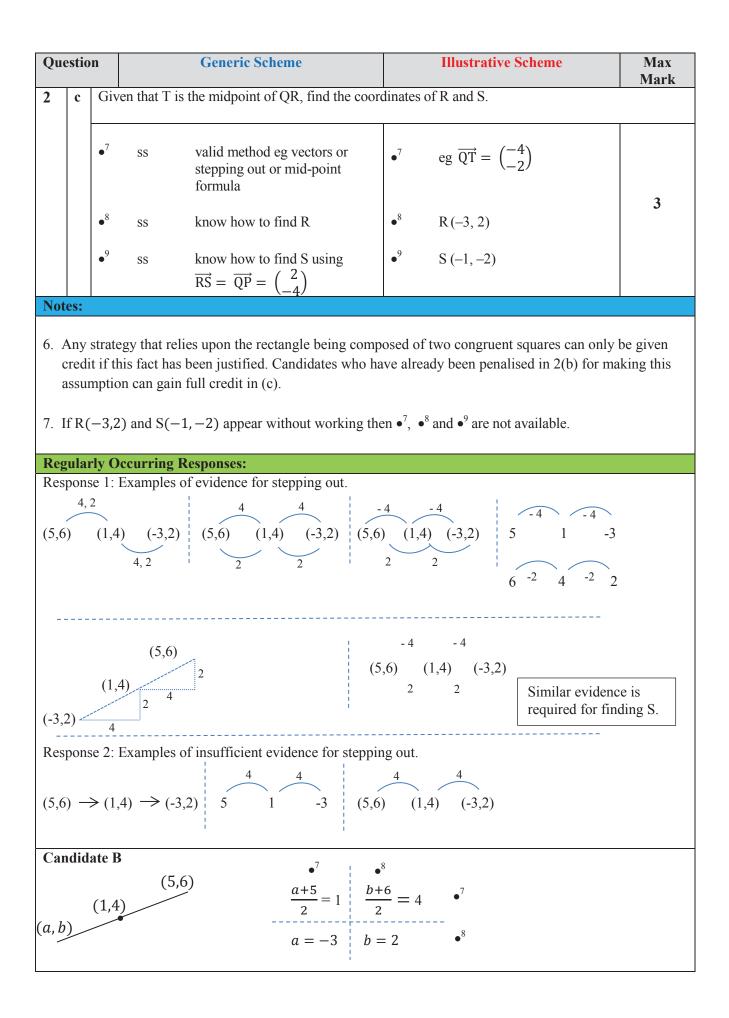
- **16** In any 'Show that . . .' question, where the candidate has to arrive at a formula, the last mark of that part is not available as a follow through from a previous error.
- 17 All working should be carefully checked, even where a fundamental misunderstanding is apparent early in the candidate's response. Marks may still be available later in the question so reference must be made continually to the marking instructions. All working must be checked: the appearance of the correct answer does not necessarily indicate that the candidate has gained all the available marks.
- **18** In the **exceptional** circumstance where you are in doubt whether a mark should or should not be awarded, consult your Team Leader (TL).
- **19** Scored out working which **has not been replaced** should be marked where still legible. However, if the scored out working **has been replaced**, only the work which has not been scored out should be marked.
- **20** Where a candidate has made multiple attempts using the same strategy, mark all attempts and award the lowest mark.

Where a candidate has tried different strategies, apply the above ruling to attempts within each strategy and then award the highest resultant mark. For example:

Strategy 1 attempt 1 is worth 3 marks	Strategy 2 attempt 1 is worth 1 mark
Strategy 1 attempt 2 is worth 4 marks	Strategy 2 attempt 2 is worth 5 marks
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

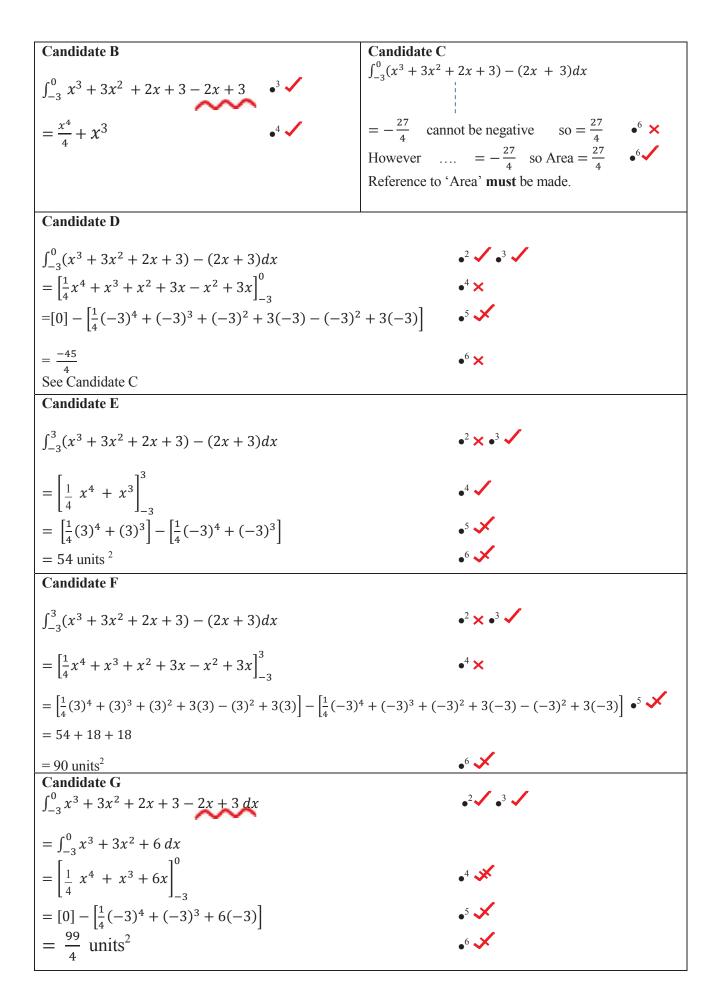
- **21** It is of great importance that the utmost care should be exercised in totalling the marks. A tried and tested procedure is as follows:
 - Step 1 Manually calculate the total from the candidate's script.
 - Step 2 Check this total using the grid issued with these marking instructions.
 - Step 3 In SCORIS, enter the marks and obtain a total, which should now be compared to the manual total.


This procedure enables markers to identify and rectify any errors in data entry before submitting each candidate's marks.

- 22 The candidate's script for Paper 2 should be placed inside the script for Paper 1, and the candidate's total score (i.e. Paper 1 Section B + Paper 2) written in the space provided on the front cover of the script for Paper 1.
- **23** In cases of difficulty, covered neither in detail nor in principle in these instructions, markers should contact their TL in the first instance. A referral to the Principal Assessor (PA) should only be made in consultation with the TL. Further details of PA Referrals can be found in The General Marking Instructions.

Paper 2

Que	estion		Generic	Scheme		Illust	trative Scheme	Max Mark
1	The fi	rst three	e terms of a seque	nce are 4, 7 and 16.				
			is generated by th c , with $u_1 = 4$.	ne recurrence relation				
	Find t	he value	es of m and c .		1			_
	$ullet^1$	ic	interpret recur relation	rence	•1	7 = 4n	n + c	
	• ²	ic	interpret recur relation	rence	•2	16 = 7	m + c	4
	• ³	SS	know to use si equation	multaneous	•3	7m + 6 4m + 6	c = 16 c = 7 leading to	-
	• ⁴	pd	find m and c		•4	m=3	, <i>c</i> = -5	
Not	es:				<u> </u>			
1.	Treat of	equatio	ons like $7 = m4$	+ c or 7 = m(4)	+ <i>c</i> as	bad for	m.	
	•		ing Responses:	1				
Can	didate	A		Candidate B			Candidate C	
m = or	working 3 and a	c = -5		Only one equation 7 = 4m + c m = 3 and $c = -5$			Partial verification m = 3 and $c = -53 \times 4 - 5 = 7$	
u_{n+}	$_{1} = 3u$	_n – 5						
1 m	ark out	of 4		2 marks out of 4			2 marks out of 4	
Can	didate	D		Candidate E				
m = 3 ×	rerificat 3 and c 4 - 5 = 7 - 5 =	c = -5 = 7 an		7 = 4m + c 16 = 7m + c m = 3 and $c = -$	-5			
3 ma	arks out	t of 4		4 marks out of 4				


Qu	estio	n		Generic Scheme		Illustrative Scheme	Max Mark
2	a	The	diagram	shows rectangle PQRS with P(7, 2) and Q	(5, 6).	
		Find	l the equa	ation of QR.	R	V Q(5, 6) O P(7, 2) S	
		•1	SS	know to find gradient	•1	$m_{\rm PQ} = -2$	
		•2	ic	use perpendicular gradient	• ²	$m_{\rm QR} = \frac{1}{2}$	3
		•3	ic	state equation of line	•3	$m_{\text{QR}} = \frac{1}{2}$ $y - 6 = \frac{1}{2} (x - 5)$	
	tes:						
				as a consequence of using a perper			
2. 2	$m = \mathbf{b}$	2		x nihilo leading to the correct equat n P with the equation	ion for (QR gains 0 marks. $y \neq Q(5, 6)$	
		<i>x</i> + 2	3y = 13 in	ntersects QR at T.	R	P(7, 2)	
		•4	SS	prepare to solve	•4	x + 3y = 13 and $x - 2y = -7$	
		•5	pd	solve for one variable	•5	x = 1 or $y = 4$	3
		•6	pd	solve for second variable	•6	y = 4 or $x = 1$	
	tes:						·
4. 8 5. •	Stepp ⁴ , ● ⁵ gula	oing o and ●	ut from I ⁶ are not)ccurri i	P to Q and then the reverse from Q	is not a	QR, \bullet^4 can still be awarded but \bullet^5 is valid strategy for obtaining T. bes , (ii) give answers only without v	
				eading to			
2y	<i>i</i> – <i>x</i>	c = - = 13	-17	4			
5 <i>y</i>	= -	-4 4		- 5 *			
y =	=	5		6			
<i>x</i> =	- 15	5		• •			

Que	estion					Ge	ener	ric	Sch	em	e									III	us	tra	ati	ve S	Sch	eme	e					/lax lark
3	2		en th $3x^2$ ss		- 5, f	act		e th	is c	ubi				ic			•1		1	-		1		2		1			5			
		-	55			vis		use	л	11	11 5	yını	liet	.10			-		1			1				4			5	-		
		2	pd		cc	omp	lete	ev ev	alu	atio	n						•2					1		4		5			0			4
		3	ic		st	ate	qua	dra	tic 1	fact	or						•3		x	² +	4	x +	- 5									
		4	ic				rea ratic		for	irre	edu	cibl	le				•4		(. V	x — ali	1) d 1) (x rea	c ² - SO	⊦ 4 <i>x</i> n	+	5) w	∕itl	h				
Not	es:																															
2	a) $b^{\frac{1}{2}}$ b) $b^{\frac{1}{2}}$ c) 10 Do no a) $b^{\frac{1}{2}}$ b) (z c) (z Candi	$c^{2} = -$ $c^{2} = -$ $c^{2} = -$ $c^{2} = -$ $c^{2} = -$ $c^{2} = -$ $c^{2} = -$	$4ac$ $4 \times$ except $4ac$ $1)(x$ $1)(x$ es where the second secon	$= 1$ $5 <$ any < 0 $c^{2} +$ $5 = 0$ no us	6 - 0, so 0 of th, so 0 4x - 3 .)(x e alg	4 × o de ne f doe + 5	(5) (ollo (s) (c) (caic	< 0 no wirr ot f bes c lor	, so t fac ng fi act not ann	o do ctor or or oris t fac ot f	es rise 4 se. cto fact	not e. rise oris	e. se f	icto	ori the	r. t (<i>x</i>								_							ad \bullet^3	
	Candi																				ar	dir	ıg	no i	ea	l roc	ots	s g	ain	● .		
	Treat								a v	alid	l re	asoi	n, a	as	bao	d fo	rm f	òr	•4.													
	<mark>ularly</mark> 1dida			ring	Res	pon	ses			1	Ca	ndi	ida	nte	B																	
x ² - (x -	+ 4x - 1)(+ 5 x +	5)(x —	1)	•	3 4 ×	*		1	x ³	+ 3	3 <i>x²</i>	2 _	+)	r —	=	= (<i>x</i> -	— 2	1)	(<i>x</i>	2 _		κ +	:+ - 5)	-		• ¹ • ³	3	• ²	
Can	ndida	te (2																													
(x -	+ 4x - 1)x - 4ac	2+	- 4 <i>x</i>) so	-	3 es no																									

Qu	estio	n		Generic Scheme		Illustrative Scheme	Max Mark				
3	b	Sho $y =$	by that the $x^4 + 4x^3$	the curve with equation + $2x^2 - 20x + 3$ has only one state	tionary point	-					
		Fin	d the <i>x</i> -c	oordinate and determine the natu	re of this poi	nt.					
		•5	SS	start to differentiate	•5	two non-zero terms correct					
		•6	pd	complete derivative and equate to 0	•6	$4x^3 + 12x^2 + 4x - 20 = 0$					
		•7	ic	factorise	•7	$4(x-1)(x^2+4x+5)$	5				
		•8	pd	process for <i>x</i>	•8	x = 1					
		•9	ic	justify nature and state conclusion	•9	nature table and minimum					
No	tes:	<u> </u>									
	 6. = 0 must appear at •⁶ or •⁷ for mark •⁶ to be gained. 7. •⁹ can be gained using the second derivative to determine the nature. 8. Candidates who incorrectly obtain more than one linear factor in (a) and use this result in (b) must solve to get more than one solution in order to gain •⁸. Mark •⁹ is not available. 										
		late		g Responses:	Candida	nte E					
lead $4x^3$ $4(x)$	ding $3^3 + 1$ $z^3 +$	to $2x^2$ $3x^2$	+4x - +x - 5		$\frac{dy}{dx}$ –	$\frac{1}{0} + \frac{9}{4}$ Min e^{9} n acceptable response.					

Que	estion		Generic Scheme	Illustrative Scheme	Max Mark
4	The lin	e with	equation $y = 2x + 3$ is a tangent to t	he curve with equation	
	$y = x^3 +$	$+3x^{2}+$	2x + 3 at A(0, 3), as shown in the d	iagram.	
	The lin Show t and fin	e meet hat B i d the a	s the curve again at B. s the point $(-3, -3)$ rea enclosed by ne curve.	y $y = x^3 + 3x^2 + 2x + 3$ A(0, 3) B B B B	
	•1	SS	know how to show that B is the point of intersection of the line and curve.	• ¹ $(-3)^3 + 3(-3)^2 + 2(-3) + 3 = -3$ and $2(-3) + 3 = -3$ or solving simultaneous equations	
	2	ss ic	know to integrate and interpret limits. use " upper – lower"	• ² $\int_{-3}^{0} \dots \dots$ • ³ $\int_{-3}^{0} (x^3 + 3x^2 + 2x + 3) - (2x + 3)dx$	6
	•4	pd	integrate	• 4 $\frac{1}{4}x^4 + x^3$	
	•5	pd	substitute limits	4	
	•6	pd	evaluate area	• ⁵ 0 - $\left(\frac{1}{4}(-3)^4 + (-3)^3\right)$ • ⁶ $\frac{27}{4}$ units ²	
2. C 3. C 4. W 5. T Reg	Vhere a c andidate andidate Ahere can not availa he omiss ularly C adidate A (<i>lower</i>	es who es must ndidate able. sion of Decurri A	substitute without integrating at $\bullet^3 c$ show evidence that they have cons s show no evidence for both \bullet^4 and dx at \bullet^3 should not be penalised. ing Responses:		⁶ are

Que	estion		Generic Scheme	Illustrative Scheme	Max Mark
5	Solve	e the eq	uation		
	log ₅ ((3-2x)	$+\log_5(2+x) = 1$, where x is a real n	umber.	_
	•1	SS	use correct law of logs	• ¹ $\log_5 [(3-2x)(2+x)] = 1$ stated or implied by • ²	
	•2	ic	know to and convert to exponential form	• ² $(3-2x)(2+x) = 5^1$	4
	•3	pd	express as an equation in standard quadratic form	$\bullet^3 \qquad 2x^2 + x - 1 = 0$	-
	•4	ic	solve quadratic	• ⁴ $x = \frac{1}{2}$, $x = -1$	
Not	es:				
2.	Where not ava	e candic ailable.	-	ther by crossing out or by explicit stateme	ent, then \bullet^4 is
	ularly didat		ring Responses:	Candidate B	
		/	4		• ³
x =	$\frac{1}{2}, x$	₹-1	• ⁴ ×	$2x^{2} + x - 1 = 0$ $(2x + 1)(x - 1) = 0$	• •
				(2x + 1)(x - 1) = 0 $x = -\frac{1}{2}, x = 1$	• ⁴ ×
Car	ndidat	e C		Candidate D	
		working $x = 1$	leading to \bullet^4	$\log_5 \frac{(3-2x)}{(2+x)} = 1$	• ¹ ×
Her	e the d	iscard o	f $x = -2$ is valid in the context of	$\frac{(3-2x)}{(2+x)} = 5^1$	•2
the	origina	l questi	011.	•3 🗙	•4 🗙
Car	ndidat	e E		Candidate F	
log	5[(3 –	2 <i>x</i>)(2	$(+x)] = 1$ $\bullet^1 \checkmark$	^	• ¹ ×
(3 -	- 2 <i>x</i>) ((2 + x)	$) = 1 \qquad \bullet^2 \times$	(3-2x)(2+x) = 1	• ² ×
2 <i>x</i> ²	- <i>x</i> -	- 6 = 0	• ³ ×	$\bullet^3 \bullet^4$ not available	
	2, x =	2	• ⁴ ×		
• 15	s not av	varded	since $x = 2$ is not a valid solution.		

	estion		Generic Scheme		Illus	strative Scheme	Max Mark
6	Give	n that \int_{0}^{∞}	$\int_{0}^{a} 5\sin 3x dx = \frac{10}{3}, \ 0 \le a < \pi,$, calculate the	value of <i>a</i> .		
	•1	SS	integrate correctly			$\cos 3x$	
	•2	pd	process limits		$\bullet^2 \qquad \frac{-5}{3}$	$\cos 3a + \frac{5}{3}\cos 0$	5
	•3	pd	evaluate and form a corre	ect equation	$\bullet^3 \qquad \frac{-5}{3}$	$\cos 3a + \frac{5}{3} = \frac{10}{3}$	5
	•4	pd	start to solve equation		• ⁴ cos	3a = -1	
	•5	pd	solve for a		• ⁵ $a =$	$\frac{\pi}{3}$	
6. Reg	The va gularly	alue of Occur	ate integrate incorrectly \bullet^2 , \bullet^2, \bullet^2 , \bullet^2, \bullet^2 , \bullet^2 , \bullet^2, \bullet^2, \bullet^2 , \bullet^2, \bullet^2, \bullet^2, \bullet^2 , \bullet^2, \bullet^2		re still availab	Ie.	
	ndidate		8				
	iuiuau	e A		Ca	ndidate B		
[15	cos3 <i>x</i>]			¹ × [–	ndidate B $5\cos 3x]_0^a$		• ¹ ×
_	cos3 <i>x</i>]		s0 •2	$^{1} \times [-$		s0	• ¹ × • ² ×
15c 15c	cos3x] cos3a - cos3a -] ^a - 15cos - 15 =	$\frac{10}{3}$	$1 \times [-5]$	$5\cos 3x]_0^a$ $5\cos 3a + 5\cos 3a^2$		• ¹ × • ² ×
15c 15c cos	$\begin{bmatrix} \cos 3x \\ \cos 3a \end{bmatrix}$ $\cos 3a = \frac{5}{4}$	\int_{0}^{a} - 15cos - 15 = $\frac{55}{15}$	$\frac{10}{3}$	$1 \times [-5]$	$5\cos 3x]_0^a$		• ³ ×
15c 15c cos	cos3x] cos3a - cos3a -	\int_{0}^{a} - 15cos - 15 = $\frac{55}{15}$	$\frac{10}{3}$	$\begin{array}{c} 1 \times \\ 2 \times \\ 3 \times \\ 4 \times \\ 5 \times \end{array} \begin{array}{c} -5 \\ -5 \\ -5 \\ a \end{array}$	$5\cos 3x]_0^a$ $5\cos 3a + 5\cos 3a + 5 = 53a = \frac{1}{3}$ $= 0 \cdot 41$		• ³ •
15c 15c cos: no s	$\begin{bmatrix} \cos 3x \\ \cos 3a \end{bmatrix}$ $\cos 3a = \frac{5}{4}$	$ _{0}^{a}$ - 15cos - 15 = $\frac{55}{15}$ ns	$\frac{10}{3}$	$a^{1} \times [-$ $a^{2} \times -5$ $a^{3} \times -5$ $a^{4} \times cos$ $a =$ Igr	$5\cos 3x]_0^a$ $5\cos 3a + 5\cos 3a + 5 = 53a = \frac{1}{3}$ $= 0 \cdot 41$	$\frac{10}{3}$	• ³ ×
15c 15c cos: no s Car	$2\cos(3x)$ $\cos(3a) - \cos(3a)$ $\cos(3a) - \frac{5}{4}$ $\sin(3a) - \frac{5}{4}$	$ _{0}^{a}$ - 15cos - 15 = $\frac{55}{15}$ ns	$\frac{10}{3}$	$\begin{bmatrix} 1 \\ \times \\ 2 \\ -5 \\ 3 \\ 4 \\ 5 \\ 5 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$5\cos 3x]_0^a$ $5\cos 3a + 5\cos 3a + 5 = 53a = \frac{1}{3}$ $= 0 \cdot 41$ hore other solu	$\frac{10}{3}$	• ³ • • • • • • • • • • • • • • • • • • •
$15c$ $15c$ cos^{2} no s Car $\frac{5}{3}co$	$\frac{1}{2}\cos 3x = \frac{1}{2}\cos 3a = \frac{1}{2}\cos 3a = \frac{1}{2}\cos 3a = \frac{1}{2}\cos 3a = \frac{1}{2}\cos 3x$	$ _{0}^{a}$ - 15cos - 15 = $\frac{55}{15}$ ns	$\frac{10}{3}$	$a^{1} \times [-$ $a^{2} \times -5$ $a^{3} \times -5$ $a^{4} \times cos$ $a = 1$ Igr Ca $a^{1} \times -1$	$5\cos 3x]_0^a$ $5\cos 3a + 5\cos 3a + 5 = 53a = \frac{1}{3}$ $= 0 \cdot 41$ hore other solution indidate D	$\frac{10}{3}$	• 4 • • • • • • • • • • • • • • • • • •
$15c$ $15c$ cos^{2} $no s$ Car $\frac{5}{3}co$ $\frac{5}{3}co$	$\frac{1}{2}\cos 3a - \frac{1}{2}\cos 3a - \frac{5}{4}\cos 3a = \frac{5}{4}\cos 3a - \frac{5}{4}\cos 3x$	\int_{0}^{a} - 15 cos - 15 = $\frac{55}{15}$ ns e C	$\frac{10}{3}$	$a^{1} \times [-$ $a^{2} \times -5$ $a^{3} \times -5$ $a^{4} \times cos$ $a = \frac{1}{Igr}$ Ca $a^{1} \times -1$ $a^{2} \times -1$ $a^{3} \times -1$	$5\cos 3x]_0^a$ $5\cos 3a + 5\cos 3a + 5\cos 3a + 5 = 53a = \frac{1}{3}$ $= 0 \cdot 41$ nore other solution other s	$\frac{10}{3}$ ations in given interval $\frac{10}{3}$	• ³ • • • • • • • • • • • • • • • • • • •
$15c$ $15c$ cos^{2} $no s$ Can $\frac{5}{3}co$ $\frac{5}{3}co$ $\frac{5}{3}co$	$\frac{1}{2}\cos 3a - \frac{1}{2}\cos 3a - \frac{5}{4}\cos 3a = \frac{5}{4}\cos 3a - \frac{5}{4}\cos 3x$	$\int_{0}^{a} - 15 \cos \theta = 15 = \frac{55}{15}$ $= C$ $\frac{5}{3} \cos \theta = \frac{5}{3} = \frac{10}{3}$	$\frac{10}{3}$	$a^{1} \times [-$ $a^{2} \times -5$ -5 $a^{3} \times -5$ $a^{4} \times cos$ $a^{2} \times -1$ $a^{1} \times -1$ $a^{1} \times -1$ $a^{1} \times -1$ $a^{2} \times -1$ $a^{3} \times -1$ $a^{4} \times -1$	$5\cos 3x]_0^a$ $5\cos 3a + 5\cos 3a + 5\cos 3a = \frac{1}{3}$ $= 0 \cdot 41$ hore other solution indidate D $.5\cos 3x$ $.5\cos 3a + 15$	$\frac{10}{3}$ ations in given interval $\frac{10}{3}$	• 3 • × • 4 • × • 5 • ×

oj tř C T d • • C T	pen-en ne follo Conditio 'he frar ifferen x m y m	ame of a shelter is to be made of rods of two nt lengths: netres for top and bottom edges; netres for each sloping edge.	y x					
T d • C T T	The fram ifferen x m y m	ame of a shelter is to be made of rods of two nt lengths: netres for top and bottom edges; netres for each sloping edge.						
T T		ion 2						
a	Condition 2 The frame is to be covered by a rectangular sheet of material. The total area of the sheet is 24 m ² .							
		ow that the total length, <i>L</i> metres, of the rods = $3x + \frac{48}{x}$.	s used in a shelter is given by					
•	¹ s	ss identify expression for L in x and y	• ¹ $L = 3x + 4y$					
•	² i	ic identify expression for y in terms of x	• ² $y = \frac{24}{2x}$	3				
•	³ p	pd complete proof	• ³ $L = 3x + 4 \times \frac{24}{2x}$ and complete					
Notes:		stitution for y at \bullet^3 must be clearly shown.						

Que	estion			Generic Scheme		Illustrative Scheme	Max Mark
7	b		ninimise	ost £8.25 per metre. production costs, the total lengt	h of rods u	sed for a frame should be as small as	
	i ii			the of x for which L is a minimum eminimum cost of a frame.	n.		
		•4	pd	prepare to differentiate	•4	48 <i>x</i> ⁻¹	
		•5	pd	differentiate	• ⁵	$3 - 48x^{-2}$	
		•6	pd	equate derivative to 0	•6	$3 - 48x^{-2} = 0$	7
		•7	pd	process for <i>x</i>	•7	<i>x</i> = 4	7
		• ⁸	ic	verify nature	• ⁸	nature table or 2 nd derivative	
		•9	ic	evaluate L	•9	L = 24	
		• ¹⁰	pd	evaluate cost	• ¹⁰	$cost 24 \times \pounds 8.25 = \pounds 198$	
3. y Reg Can	do not y = 2	gain • 4 is no y Occu te A	⁹ . ot awarc		wever cand	idates who process $x = -4$ to obtain I	2 = -24
	= 3 -			•4 • •5 •			
Can	ndidan $\frac{2}{dI}$ $\frac{dI}{dx}$	x	→ 4 . - 0 Min	<u>→</u> +	Candid $\frac{x}{\frac{dL}{dx}}$	ate C $ \longrightarrow -4 \longrightarrow 4 \longrightarrow$ $+ 0 - 0 +$ Min	
		Mini	mum a	cceptable response	Do	not penalise the inclusion of $x = -$	-4

Question			Generic Scheme	Illustrative Scheme	Max Mark		
8	Solve	algeb	raically the equation $\sin 2x = 2\cos^2 x$	for $0 \le x < 2\pi$			
	•1	SS	use correct double angle formulae				
	•2	SS	form correct equation	$\bullet^2 \qquad 2\sin x\cos x - 2\cos^2 x = 0$			
	•3	SS	take out common factor	• ³ $2\cos x (\sin x - \cos x) = 0$			
	•4	ic	proceed to solve	• ⁴ $\cos x = 0$ and $\sin x = \cos x$			
	•5	pd	find solutions	$\bullet^5 \qquad \frac{\pi}{2} \qquad \frac{3\pi}{2}$			
	•6		find remaining solutions	$\bullet^6 \qquad \frac{\pi}{4} \qquad \frac{5\pi}{4}$	6		
	• ¹	SS	use double angle formula	• $1 \cos 2x + 1$			
	• ²	SS	form correct equation	• ² $\sin 2x - \cos 2x = 1$			
	•3	SS	express as a single trig function	$\bullet^3 \qquad \sqrt{2}\sin\left(2x - \frac{\pi}{4}\right) = 1$			
	•4	ic	proceed to solve	$\bullet^4 \qquad \sin\left(2x - \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$			
	•5	pd	find solutions	• ⁵ $2x - \frac{\pi}{4} = \frac{\pi}{4}, \frac{3\pi}{4} = \frac{9\pi}{4}, \frac{11\pi}{4}$			
	•6	pd	find solutions	• ⁶ $x = \frac{\pi}{4}, \frac{\pi}{2}$ $x = \frac{5\pi}{4}, \frac{3\pi}{2}$			
Not	es:						
 In Method 1, = 0 must appear at stage •² or •³ for •² to be available. Accept the use of the wave function to solve sin x - cos x= 0 at stage •⁴ in Method 1. Accept sin2x - 2cos²x = 0 as evidence for •². For candidates who obtain all four solutions in degrees •⁶ can be gained but •⁵ is not available. 							
Regularly Occurring Responses:							
Ca	ndidat	e A		andidate B			
		-		Correct working leading to $x = 90^{\circ}$, 270° \bullet^{5} \bullet^{6} \land			

Question		n	Generic Scheme			Illustrative Scheme	Max Mark		
9	a	The concentration of the pesticide, <i>Xpesto</i> , in soil can be modelled by the equation $P_t = P_0 e^{-kt}$							
		• 1	P_0 is the P_t is the	e initial concentration; concentration at time <i>t</i> ; ime, in days, after the application of t	he pesti	cide.			
		Once in the soil, the half-life of a pesticide is the time taken for its concentration to to one half of its initial value.							
		If the	e half-li	fe of Xpesto is 25 days, find the value	of k to	2 significant figures.	-		
		\bullet^1	ic	interpret half-life	•1	$\frac{1}{2} P_0 = P_0 e^{-25k}$			
		• ²	pd	process equation	•2	stated or implied by \bullet^2 $e^{-25k} = \frac{1}{2}$			
		•3	SS	write in logarithmic form	•3	$\log_e \frac{1}{2} = -25k$	4		
		• ⁴	pd	process for k	•4	$k \approx 0.028$			
	Do 1			andidates who substitute a numerical g Responses:	value fo	r P_0 in part (a).			
Can	ndida	ate A							
$\frac{1}{2}P_0$	= P	$P_0 e^{-25}$	5k	•1 🗸					
$\frac{1}{2} = \log_1 k = k$	$10\left(\frac{1}{2}\right)$) = -	-25 <i>k</i> log	• ² • ³ • ⁴					

Question		n	n Generic Scheme			Illustrative Scheme		
9	b	-	Eighty days after the initial application, what is the percentage decrease in concentration of <i>Xpesto</i> ?				on of	
		•5	ic	interpret equation	•5	$P_t = P_0 e^{-80 \times 0.028}$		
		•6	pd	process	• ⁶	$P_t \approx 0.1065 P_0$	3	
		•7	ic	state percentage decrease	•7	89%		
3. 4.	For pena For \bullet^6 i	alised i a value s only	n part(a e of <i>k</i> er availabl	to use a value of k which does not a a). x-nihilo then \bullet^5 , \bullet^6 and \bullet^7 are not a le for candidates who express P_t a ates using proportion. This is not a	available. s a multip	ble of $P_{0.}$	less already	
Reg	gulaı	rly Oc		Responses:				
Ca	ndid	ate B			Candio	late C		
P_t =	$= P_0$	$e^{-0.03}$	×80	•5 💉	$P_t = P_c$	$e^{-80 \times 0.0277}$	•5 ✓	
= 0) · 09	907		•6 🔨	$P_t \approx 0$	· 1088 Po	•6	
lead	leading to $90 \cdot 9\%$ $\bullet^7 \checkmark$				89 · 11	%	•7 ✓	
Ca	ndid	ate D			Candio	late E		
•5 •	•5 • •6 •				$P_t = P_0$	$e^{-80 \times 0.028}$	•5	
P_t =	$P_t = 89\% P_0 \qquad \bullet^7 \times$				Let P_0 be 100 and $P_t = 100 \times 0.1065$ • ⁶			
Ca	Candidate F				$P_t = 10.65$			
$P_t =$	$P_t = 100e^{-80 \times 0.028}$ • ⁵				⇒ Percentage decrease is $100 - 10.65 = 89.35\%$ • ⁷ ✓			
$P_t =$	$P_t = 10.65 \qquad \bullet^6 \times$							
	9.35 ndid	% ate G		•7 💉	Candio	lata H		
		-80×0.02	8	•5 🗸		e ^{-80 × 0.028}	•5	
		$e^{-80 \times 0}$				$e^{-80 \times 0.028}$		
	= 10			• ⁶ ×	$P_t = 0.1$		•6	
→ (39.35	5% dec	rease	•7 💉	$\Rightarrow 89.3$	5% decrease	•7 ✓	

[END OF MARKING INSTRUCTIONS]

Page 28