1 The diagram shows a cuboid $O P Q R, S T U V$ relative to the coordinate axes.
P is the point $(4,0,0)$,
Q is $(4,2,0)$ and U is $(4,2,3)$.
M is the midpoint of OR .
N is the point on UQ such that $\mathrm{UN}=\frac{1}{3} \mathrm{UQ}$.

(a) State the coordinates of M and N .

Treat as bad form, coordinates written as components and vice versa, throughout this question.

Generic Scheme

Illustrative Scheme
1 (a)

- ${ }^{1}$ ic interpret midpoint for M
- ${ }^{2} \quad$ ic interpret ratio for N
- ${ }^{1} \quad(0,1,0)$
-2 $(4,2,2)$

1 (b)

- ic intepret diagram
-4 pd process vectors

$$
\begin{aligned}
\bullet & \overrightarrow{\mathrm{VM}}=\left(\begin{array}{r}
0 \\
-1 \\
-3
\end{array}\right) \\
\bullet & \overrightarrow{\mathrm{VN}}=\left(\begin{array}{r}
4 \\
0 \\
-1
\end{array}\right)
\end{aligned}
$$

Using evidence from (a) or may have been taken directly from diagram.

Notes

1. V is the point $(0,2,3)$, which may or may not appear in the working to (b).

Regularly occurring responses

Response 1
(a) $\mathrm{M}(2,0,0) \times \bullet^{1} \mathrm{~N}(4,2,-1) \times \bullet^{2}$

(b)

	Response 2
Incorrect	
V stated	

(b) $\mathrm{V}(0,3,2)$
$\overrightarrow{\mathrm{VM}}=\left(\begin{array}{r}0 \\ -2 \\ -2\end{array}\right) \quad x \quad{ }^{3}$
$\overrightarrow{\mathrm{VN}}=\left(\begin{array}{r}4 \\ -1 \\ 0\end{array}\right) \quad \rtimes \quad{ }^{4}$

1 mark out of 2

Response 3
(a) $\mathrm{M}(0,2,0) \times \bullet^{1} \mathrm{~N}(4,2,2) \checkmark \bullet^{2}$

1 mark out of 2
(b)

$$
\begin{aligned}
& \overrightarrow{\mathrm{VM}}=\left(\begin{array}{r}
-4 \\
0 \\
-3
\end{array}\right) \times \bullet^{3} \quad \begin{array}{c}
\mathrm{V}(4,2,3) \\
\text { used in } \\
\text { both but }
\end{array} \\
& \overrightarrow{\mathrm{VN}}=\left(\begin{array}{r}
0 \\
0 \\
-1
\end{array}\right) \times \bullet^{4} \begin{array}{r}
\text { not stated }
\end{array} \\
& 0 \text { marks out of } 2
\end{aligned}
$$

1 The diagram shows a cuboid OPQR,STUV relative to the coordinate axes.
P is the point $(4,0,0)$,
Q is $(4,2,0)$ and U is $(4,2,3)$.
M is the midpoint of $O R$.
N is the point on UQ such that $\mathrm{UN}=\frac{1}{3} \mathrm{UQ}$.

(c) Calculate the size of angle MVN.
$\xrightarrow[(4,0,0)]{ }$
Treat as bad form, coordinates written as components and vice versa, throughout this question.
Generic Scheme
Illustrative Scheme
1 (c)

Method 1 : Vector Approach
-5 ss know to use scalar product

- ${ }^{6}$ pd find scalar product
-7 pd find magnitude of a vector
- pd find magnitude of a vector
- 9 pd evaluate angle

Method 2 : Cosine Rule Approach

- 5 ss know to use cosine rule
- ${ }^{6}$ pd find magnitude of a side
${ }^{7}$ pd find magnitude of a side
- ${ }^{8} \mathrm{pd} \quad$ find magnitude of a side
- pd evaluate angle

Method 1 : Vector Approach
$\bullet \quad \cos \mathrm{M} \hat{\mathrm{V}} \mathrm{N}=\frac{\overrightarrow{\mathrm{VM}} \cdot \overrightarrow{\mathrm{VN}}}{|\overrightarrow{\mathrm{VM}}||\overrightarrow{\mathrm{VN}}|} \quad$ stated, or implied by $\bullet 9$

- $6 \overrightarrow{\mathrm{VM}} \cdot \overrightarrow{\mathrm{VN}}=3$
$\bullet \quad|\overrightarrow{\mathrm{VM}}|=\sqrt{10}$
$\bullet|\overrightarrow{\mathrm{VN}}|=\sqrt{17}$
- ${ }^{9} 76 \cdot 7^{\circ}$ or $1 \cdot 339$ rads or $85 \cdot 2$ grads

Method 2 : Cosine Rule Approach

- $\quad \cos \mathrm{M} \hat{\mathrm{V}} \mathrm{N}=\frac{\mathrm{VM}^{2}+\mathrm{VN}^{2}-\mathrm{MN}^{2}}{2 \times \mathrm{VM} \times \mathrm{VN}} \quad$ stated, or implied by
- ${ }^{6} \quad \mathrm{VM}=\sqrt{10}$
-7 $\quad \mathrm{VN}=\sqrt{17}$
-8 $\quad \mathrm{MN}=\sqrt{21}$
$\bullet \quad 76 \cdot 7^{\circ}$ or 1.339 rads or $85 \cdot 2$ grads

Notes

2. \bullet is not available to candidates who choose to evaluate an incorrect angle.
3. For candidates who do not attempt \bullet^{9}, then \bullet^{5} is only available if the formula quoted relates to the labelling in the question.
4. \bullet^{9} should be awarded for any answer that rounds to 77° or $1 \cdot 3$ rads or 85 grads (i.e. correct to two significant figures.)

Regularly occurring responses

Response 1
$\cos \mathrm{MON}=\frac{\overrightarrow{\mathrm{OM}} \cdot \overrightarrow{\mathrm{ON}}}{|\overrightarrow{\mathrm{OM}}||\overrightarrow{\mathrm{ON}}|} \not \Perp \cdot 5 \sqrt{\text { Wrong angle }}$
$\overrightarrow{\mathrm{OM}} \cdot \overrightarrow{\mathrm{ON}}=2 \quad$ - ${ }^{6}$
$|\overrightarrow{\mathrm{OM}}|=1 \nVdash \bullet^{7}$
$|\overrightarrow{\mathrm{ON}}|=\sqrt{24} \nsim \bullet^{8}$
Eased because only one non-zero component.
$65 \cdot 9^{\circ}$ or $1 \cdot 150$ rads or $73 \cdot 2$ grads $\backslash \bullet 9$
3 marks out of 5

Response 2

$\cos \mathrm{M} \hat{\mathrm{V}} \mathrm{N}=\frac{\overrightarrow{\mathrm{VM}} \cdot \overrightarrow{\mathrm{VN}}}{|\overrightarrow{\mathrm{VM}}||\overrightarrow{\mathrm{VN}}|} \checkmark \cdot \bullet^{\begin{array}{c}\text { Going } \\ \text { directly to }\end{array}}$
$\overrightarrow{\mathrm{VM}} \cdot \overrightarrow{\mathrm{VN}}=0 \quad X{ }^{6}$
$|\overrightarrow{\mathrm{VM}}|=\sqrt{17} \quad$ X 7
$|\overrightarrow{\mathrm{VN}}|=2 \quad \mathbb{*}$ •8
90° or equivalent X 。
4 marks out of 5

2 (a) $12 \cos x^{\circ}-5 \sin x^{\circ}$ can be expressed in the form $k \cos (x+a)^{\circ}$, where $k>0$ and $0 \leq a<360$.
Calculate the values of k and a.

Generic Scheme

Illustrative Scheme

(a)
-1 ${ }^{1}$ ss use addition formula

- ${ }^{2}$ ic compare coefficients
- ${ }^{3}$ pd process k
- 4 pd process a
- $^{1} k \cos x^{\circ} \cos a^{\circ}-k \sin x^{\circ} \sin a^{\circ}$ or $k\left(\cos x^{\circ} \cos a^{\circ}-\sin x^{\circ} \cos a^{\circ}\right)$ stated explicitly
$\bullet^{2} k \cos a^{\circ}=12$ and $k \sin a^{\circ}=5$ or $-k \sin a^{\circ}=-5$
stated explicitly
- 13 no justification required, but do not accept $\sqrt{169}$
- $22 \cdot 6$ accept any answer which rounds to 23

Notes

1. Do not penalise the omission of the degree symbol.
2. Treat $k \cos x^{\circ} \cos a^{\circ}-\sin x^{\circ} \sin a^{\circ}$ as bad form only if the equations at the \bullet^{2} stage both contain k.
3. $13 \cos x^{\circ} \cos a^{\circ}-13 \sin x^{\circ} \sin a^{\circ}$ or $13\left(\cos x^{\circ} \cos a^{\circ}-\sin x^{\circ} \sin a^{\circ}\right)$ is acceptable for \bullet^{1} and \bullet^{3}.
4. \bullet^{2} is not available for $k \cos x^{\circ}=12$ and $k \sin x^{\circ}=5$ or $-k \sin x^{\circ}=-5$, however, \bullet^{4} is still available.
5. \bullet^{4} is lost to candidates who give a in radians only.
6. \bullet may be gained only as a consequence of using evidence at \bullet^{2} stage.
7. Candidates may use any form of the wave equation for \bullet^{1}, \bullet^{2} and \bullet^{3}, however \bullet^{4} is only available if the value of a is interpreted for the form $k \cos (x+a)^{\circ}$.

Regularly occurring responses

Response 1A
$k\left(\cos x^{\circ} \cos a^{\circ}-\sin x^{\circ} \sin a^{\circ}\right) \checkmark \bullet^{1}$
$\sin a=5 \quad \times \bullet^{2}$
$\cos a=12$
$\tan a^{\circ}=\frac{5}{12}$

$$
a=22 \cdot 6 \times \bullet^{4}
$$

$13 \cos (x+22 \cdot 6)$
$\checkmark{ }^{3}$
2 marks out of 4

Response 1B

$k \cos x \cos a-k \sin x \sin a \vee \bullet{ }^{1}$

2 marks out of 4

Response 2

$k \cos (x-a)$

$$
=13 \cos x \cos a+13 \sin x \sin a \checkmark \bullet^{3}
$$

$13 \cos a=12 \quad 13 \sin a=-5 \quad \not \quad \bullet^{2}$

or
$a=337 \cdot 4$
3 marks out of 4

Response 3A
$k \cos x^{\circ} \cos a^{\circ}-\sin x^{\circ} \sin a^{\circ}$
$k \sin a=5 \quad \checkmark \bullet^{1} \checkmark \bullet^{2}$
$k \cos a=12$
$k=13 \quad \tan a^{\circ}=\frac{12}{5} \times \bullet^{4}$

$$
a=67 \cdot 4
$$

3 marks out of 4

Response 3B

$k \cos x^{\circ} \cos a^{\circ}-\sin x^{\circ} \sin a^{\circ}$
$k \sin a=12 \checkmark \bullet^{1} \times \bullet^{2}$
$k \cos a=5$
$k=13 \cdot \tan a^{\circ}=\frac{12}{5}$

$$
a=67 \cdot 4 \bigvee \bullet^{4}
$$

3 marks out of 4

Response 4

2 (b) (i) Hence state the maximum and minimum values of $12 \cos x^{\circ}-5 \sin x^{\circ}$.
(ii) Determine the values of x, in the interval $0 \leq x<360$, at which these maximum and minimum values occur.

Generic Scheme
Illustrative Scheme
(b)
${ }^{5}$ ss state maximum and minimum
${ }^{-6} \quad$ ic find x corresponding to max. value
$\bullet \quad$ pd find x corresponding to min. value

- 5 13, - 13
- ${ }^{6}$ maximum at $337 \cdot 4$ and no others
${ }^{7}$ minimum at $157 \cdot 4$ and no others
or
- $\quad 337 \cdot 4$ and $157 \cdot 4$ and no others
\bullet^{7} maximum at $337 \cdot 4$ and minimum at $157 \cdot 4$

Notes
8. \bullet^{5} is available for $\sqrt{169}$ and $-\sqrt{169}$ only if $\sqrt{169}$ has been penalised at \bullet^{3}.
9. Accept answers which round to 337 and 157 for \bullet^{6} and \bullet^{7}.
10. Candidates who continue to work in radian measure should not be penalised further.
11. Extra solutions, correct or incorrect, should be penalised at \bullet^{6} or \bullet^{7} but not both.
12. \bullet^{6} and \bullet^{7} are not available to candidates who work with $13 \cos (x+22 \cdot 6)^{\circ}=0$ or $13 \cos (x+22 \cdot 6)^{\circ}=1$.
13. Candidates who use $13 \cos (x-22 \cdot 6)^{\circ}$ from a correct (a) lose \bullet^{6} but \bullet^{7} is still available.

Regularly occurring responses

Response 1

From (a) $a=67 \cdot 4$
$\max / \min = \pm 13 \checkmark \bullet^{5}$
\max at $292.6 \times{ }^{6}$
\min at $112 \cdot 6 \quad \underset{\bullet^{7}}{ }$
3 marks out of 3

Response 2

From (a) $\sqrt{169} \cos (x+22 \cdot 6)^{\circ}$
$\max =\sqrt{169} \min =-\sqrt{169} \quad \times \bullet^{5}$
max at 22.6
\min at $202.6 \quad \chi$ • ${ }^{7}$
2 marks out of 3
$\sqrt{169}$ already
penalised at (a)

Response 3A

N.B. Candidates who use differentiation in (b) can gain \bullet^{5} only, as a direct result of their response in (a). This question is in degrees and so calculus is not appropriate for \bullet^{6} and \bullet^{7}.

3 (a) (i) Show that the line with equation $y=3-x$ is a tangent to the circle with equation $x^{2}+y^{2}+14 x+4 y-19=0$.
(ii) Find the coordinates of the point of contact, P.

Generic Scheme

Illustrative Scheme

(a)

- ${ }^{1}$ SS substitute
-2 pd express in standard form
- ${ }^{3}$ ic start proof
-4 ic complete proof
- $x^{2}+(3-x)^{2}+14 x+4(3-x)-19=0$

Method 1 : Factorising
$\left.\begin{array}{ll}\bullet^{2} & 2 x^{2}+4 x+2 \\ \bullet^{3} & 2(x+1)(x+1)\end{array}\right\}=0 \quad$ see note 1

- equal roots so line is a tangent

Method 2 : Discriminant

- $2 x^{2}+4 x+2=0 \quad$ stated explicitly
- ${ }^{3} 4^{2}-4 \times 2 \times 2$
- $b^{2}-4 a c=0$ so line is a tangent
- $5 x=-1, y=4$

Notes

For method 1 :

1. \bullet^{2} is only available if " $=0$ " appears at either \bullet^{2} or \bullet^{3} stage.
2. Alternative wording for \bullet^{4} could be e.g. 'repeated roots', 'repeated factor', ' only one solution', 'only one point of contact' along with 'line is a tangent'.

For both methods :

3. Candidates must work with a quadratic equation at the \bullet^{3} and \bullet^{4} stages.
4. Simply stating the tangency condition without supporting working cannot gain \bullet^{4}.
5. For candidates who obtain two distinct roots, \bullet^{4} is still available for ' not equal roots so not a tangent' or ' $b^{2}-4 a c \neq 0$ so line is not a tangent', but \bullet^{5} is not available.

3 (b) Relative to a suitable set of coordinate axes, the diagram below shows the circle from (a) and a second smaller circle with centre C.

The line $y=3-x$ is a common tangent at the point P .
The radius of the larger circle is three times the radius of the smaller circle.
Find the equation of the smaller circle.

Generic Scheme

Illustrative Scheme

(b)

Method 1: via centre and radius

- ic state centre of larger circle
${ }^{\bullet}$ ss find radius of larger circle
\bullet pd find radius of smaller circle
- ${ }^{9}$ ss strategy for finding centre
${ }^{\mathbf{1 0}}$ ic interpret centre of smaller circle
- ${ }^{11}$ ic state equation

Method 2 : via ratios

- ic state centre of larger circle
${ }^{7}$ ss strategy for finding centre
- 8 ic state centre of smaller circle
- ${ }^{9}$ ss strategy for finding radius
${ }^{10} \mathrm{pd}$ find radius of smaller circle
- ${ }^{11}$ ic state equation

Method 1 : via centre and radius

$\bullet \bullet^{6}$	$(-7,-2)$	see note 11	
$\bullet \bullet^{7}$	$\sqrt{72}$	see note 6	stated, or implied by \bullet^{8}
$\bullet \bullet^{8}$	$\sqrt{8}$	see note 7	
\bullet	e.g "Stepping out"		
\bullet^{10}	$(1,6)$		
\bullet^{11}	$(x-1)^{2}+(y-6)^{2}=8$	or	$x^{2}+y^{2}-2 x-12 y+29=0$

Method 2 : via ratios

- ${ }^{6}(-7,-2)$ see note 11
$\bullet{ }^{7}$ e.g. "Stepping out"
$\bullet^{8}(1,6)$
- $\sqrt{2^{2}+2^{2}}$
- ${ }^{10} \sqrt{8} \quad$ see note 10
- ${ }^{11}(x-1)^{2}+(y-6)^{2}=8$ or $x^{2}+y^{2}-2 x-12 y+29=0$

Notes

For method 1:
6. Acceptable alternatives for \bullet^{7} are $6 \sqrt{2}$ or decimal equivalent which rounds to $8 \cdot 5$ i.e. to two significant figures.
7. Acceptable alternatives for \bullet^{8} are $\frac{\sqrt{72}}{3}$ or $2 \sqrt{2}$ or decimal equivalent which rounds to $2 \cdot 8$.
8. (1, 6) without working gains \bullet^{10} but loses \bullet^{9}.

For method 2:

9. $(1,6)$ without working gains \bullet^{8} but loses \bullet^{7}.
10. Acceptable alternatives for \bullet^{10} are $2 \sqrt{2}$ or decimal equivalent which rounds to $2 \cdot 8$.

In both methods:

11. If $m=1$ is used in a 'stepping out' method the centre of the larger circle need not be stated explicitly for \bullet^{6}.
12. For the smaller circle, candidates who 'guess' values for either the centre or radius cannot be awarded \bullet^{11}.
13. At \bullet^{11} e.g. $\sqrt{8}^{2}, 2 \cdot 8^{2}$ are unacceptable, but any decimal which rounds to $7 \cdot 8$ is acceptable.
14. \bullet^{11} is not available to candidates who divide the coordinates of the centre of the larger circle by 3 .

Generic Scheme

Illustrative Scheme

4

- ${ }^{1}$ ss know to use double angle formula
- 2 ic express as quadratic in $\cos x$
- ${ }^{3}$ ss start to solve
- pd reduce to equations in $\cos x$ only
- 5 pd complete solutions to include only one where $\cos x=k$ with $|k|>1$

Method 1 : Using factorisation

- ${ }^{1} \quad 2 \times\left(2 \cos ^{2} x-1\right) \ldots$
$\left.\bullet 4 \cos ^{2} x-5 \cos x-6\right\}=0$ must appear at either of
$\bullet \quad(4 \cos x+3)(\cos x-2)\}$ these lines to gain \bullet^{2}.
Method 2 : Using quadratic formula
- ${ }^{1} \quad 2 \times\left(2 \cos ^{2} x-1\right) \ldots$
- $24 \cos ^{2} x-5 \cos x-6=0$
- $\cos x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4 \times 4 \times(-6)}}{2 \times 4}$

In both methods :

\bullet^{4}	$\cos x=-\frac{3}{4}$	and	$\cos x=2$
\bullet^{5}	$2 \cdot 419,3 \cdot 864$	and	no solution
or			
\bullet^{4}	$\cos x=2$	and	no solution
\bullet^{5}	$\cos x=-\frac{3}{4}$	and	$2 \cdot 419,3 \cdot 864$

Notes

1. \bullet is not available for simply stating that $\cos 2 \mathrm{~A}=2 \cos ^{2} \mathrm{~A}-1$ with no further working.
2. Substituting $\cos 2 \mathrm{~A}=2 \cos ^{2} \mathrm{~A}-1$ or $\cos 2 a=2 \cos ^{2} a-1$ etc. should be treated as bad form throughout.
3. In the event of $\cos ^{2} x-\sin ^{2} x$ or $1-2 \sin ^{2} x$ being substituted for $\cos 2 x, \bullet^{1}$ cannot be given until the equation reduces to a quadratic in $\cos x$.
4. Candidates may express the quadratic equation obtained at the \bullet^{2} stage in the form $4 c^{2}-5 c+6=0$, $4 x^{2}-5 x+6=0$ etc. For candidates who do not solve a trig. equation at $\bullet^{5}, \cos x$ must appear explicitly to gain \bullet^{4}.
5. \bullet^{4} and \bullet^{5} are only available as a consequence of solving a quadratic equation subsequent to a substitution.
6. Any attempt to solve $a \cos ^{2} x+b \cos x=c$ loses \bullet^{3}, \bullet^{4} and \bullet^{5}.
7. Accept answers given as decimals which round to $2 \cdot 4$ and $3 \cdot 9$.
8. There must be an indication after $\cos x=2$ that there are no solutions to this equation.

Acceptable evidence : e.g. "cos $x=2 ", ~ " N A ", ~ " o u t ~ o f ~ r a n g e ", ~ " i n v a l i d " ~ a n d ~ " ~ c o s ~ x=2 ~ n o ", " ~ \cos x=2 \chi^{\prime \prime}$

Unacceptable evidence : e.g. " $\underline{\underline{\cos x=2}}$ ", " $\cos x=2$???", "Maths Error".
9. \bullet^{5} is not available to candidates who work throughout in degrees and do not convert their answer into radian measure.
10. Do not accept e.g. $221 \cdot 4,138 \cdot 6, \frac{221 \cdot 4 \pi}{180}, \frac{221 \pi}{180}, 1 \cdot 23 \pi$.
11. Ignore correct solution outside the interval $0 \leq x<2 \pi$.

4

Regularly occurring responses

Response 1

$$
\begin{aligned}
& 2 \times 2 \cos ^{2} x-1 \ldots \checkmark \bullet^{1} \\
& 4 \cos ^{2} x-5 \cos x-5=0 \times \bullet^{2} \\
& \cos x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4 \times 4 \times(-5)}}{2 \times 4} \nless \bullet^{3} \\
& \cos x=\frac{5-\sqrt{105}}{8} \quad \text { and } \cos x=\frac{5+\sqrt{105}}{8} \\
& \times \bullet^{4} \\
& 2 \cdot 286,3 \cdot 997 \text { and no solution } \quad \mathbb{\bullet ^ { 5 }}
\end{aligned}
$$

${ }^{5}$ is only available to candidates where one, but not both, of their equations has no solution for $\cos x$.

$$
4 \text { marks out of } 5
$$

Response 2

$4 \cos ^{2} x-1 \ldots \downharpoonleft \cdot{ }^{1}$
$4 \cos ^{2} x-1$ with no further working cannot gain \bullet^{1}; however if a quadratic in $\cos x$ subsequently appears then \bullet^{1} is awarded but
$4 \cos ^{2} x-5 \cos x-5=0 \times \bullet^{2}$
$(2 \cos x+1)(2 \cos x-5)=0 \times \bullet^{3}$
\bullet^{2} is not available.
$\cos x=-\frac{1}{2} \quad$ and $\cos x=\frac{5}{2} \quad \times \quad \bullet^{4}$
$x=\frac{2 \pi}{3}, \frac{4 \pi}{3} \quad Х \quad{ }^{5}$
3 marks out of 5

Response 3A
$2 \cos ^{2} x-1-5 \cos x-4=0 \times \bullet{ }^{1}$
$2 \cos ^{2} x-5 \cos x-5=0$ - •2
$\cos x=\frac{5 \pm \sqrt{25+40}}{4} \rtimes \bullet^{3}$
$\cos x=-0.766$ and $\cos x=3.267$ Х •4
$x=2 \cdot 44,3 \cdot 84$ and undefined $X \bullet^{5}$

4 marks out of 5

Response 3B

$$
\begin{aligned}
& \cos 2 x=2 \cos ^{2} x-1 \\
& 2 \cos ^{2} x-1-5 \cos x-4=0 \quad \checkmark \bullet^{1} \\
& 2 \cos ^{2} x-5 \cos x-5=0 \times \bullet^{2} \\
& \cos x=\frac{5 \pm \sqrt{25+40}}{4} \nless \bullet^{3} \\
& \cos x=-0.766 \text { and } \cos x=3.267 \bigotimes \bullet^{4} \\
& x=2 \cdot 44,3.84 \text { and undefined } \mathcal{\bullet}{ }^{5}
\end{aligned}
$$

[^0]5 The parabolas with equations $y=10-x^{2}$ and $y=\frac{2}{5}\left(10-x^{2}\right)$ are shown in the diagram below.
A rectangle PQRS is placed between the two parabolas as shown, so that:

- Q and R lie on the upper parabola.
- RQ and SP are parallel to the x-axis.
- T , the turning point of the lower parabola, lies on SP.
(a) (i) If TP $=x$ units, find an expression for the length of PQ .
(ii) Hence show that the area, A, of rectangle PQRS is given by

$$
A(x)=12 x-2 x^{3}
$$

(b) Find the maximum area of this rectangle.

Generic Scheme

Illustrative Scheme

5 (a)

$\bullet 1$	ss	know to and find OT	$\bullet{ }^{1}$	4 or $(0,4)$
$\bullet{ }^{2}$	ic	obtain an expression for PQ	\bullet^{2}	$10-x^{2}-4$
\bullet •	ic	complete area evaluation	$\bullet \bullet^{3}$	$2 x \times\left(6-x^{2}\right)=12 x-2 x^{3}$

Notes

1. The evidence for \bullet^{1} and \bullet^{2} may appear on a sketch.
2. No marks are available to candidates who work backwards from the area formula.
3. \bullet is only available if \bullet^{2} has been awarded.

5 (b)

- 4 ss know to and start to differentiate
- 5 pd complete differentiation
${ }^{6}$ ic set derivative to zero
-7 pd obtain x
- 8 ss justify nature of stationary point
- 9 ic interpret result and evaluate area
$\bullet A^{\prime}(x)=12 \ldots \quad$ stated, or implied by \bullet^{5}
- ${ }^{5} \quad 12-6 x^{2}$
-6 $\quad 12-6 x^{2}=0$
${ }^{7} \quad \sqrt{2}$ or decimal equivalent (ignore inclusion of $-\sqrt{2}$)
$\cdot{ }^{8}$

x	\cdots	$\sqrt{2}$	\cdots
$A^{\prime}(x)$	+	0	-

(Note : accept $12-6 x^{2}$ in lieu of $A^{\prime}(x)$ in the nature table.)

- Max and $8 \sqrt{2}$ or decimal equivalent
N.B. To conclude a maximum the evidence must come from \bullet^{8}.

Notes

4. At \bullet^{7} accept any answer which rounds to $1 \cdot 4$.
5. Throughout this question treat the use of $f^{\prime}(x)$ or $\frac{d y}{d x}$ as bad form.
6. At \bullet^{8} the nature can be determined using the second derivative.
7. At $\bullet{ }^{9}$ accept any answer which rounds to $11 \cdot 3$ or $11 \cdot 4$.

5

Regularly occurring responses

Response 1

$A(x)=12 x-2 x^{3}$
$A^{\prime}(x)=24 x^{2}-6 x^{3} \quad \times \bullet^{4} \quad \times \bullet^{5} \quad A^{\prime}(x)=0$ on its own would not be sufficient for \bullet^{6}.
$24 x^{2}-6 x^{3}=0 \quad$ - ${ }^{6}$

Response 2

At stationary points, $A^{\prime}(x)=0$

$$
\begin{array}{ll}
12-6 x^{2} & \checkmark \bullet^{4} \checkmark \bullet 5 \\
x=\sqrt{2} & \checkmark \cdot{ }^{7}
\end{array}
$$

Response 3

Response 4A
Response 4B
Response 4C

Response 5
Maximum at $x=\sqrt{2}$
$y=12 \sqrt{2}-2 \sqrt{2}^{3}=8 \sqrt{2} \quad \checkmark \cdot{ }^{9}$
Area $=2 \sqrt{2} \times 8 \sqrt{2}=32$

Treat this as an error subsequent to a correct answer.

6 (a) A curve has equation $y=(2 x-9)^{\frac{1}{2}}$.
Show that the equation of the tangent to this curve at the point where $x=9$ is $y=\frac{1}{3} x$.
(b) Diagram 1 shows part of the curve and the tangent. The curve cuts the x-axis at the point A .

Find the coordinates of point A.

Diagram 1

Generic Scheme

Illustrative Scheme
6 (a)

- ${ }^{1}$ ss know to and start to differentiate
- ${ }^{2}$ pd complete chain rule derivative
- $1 \quad \frac{1}{2}(2 x-9)^{-\frac{1}{2}}$
- 3 pd gradient via differentiation
- 4 pd obtain $y_{\text {CURVE }}$ at $x=9$
${ }^{5}$ ic state equation and complete
$\bullet^{2} \quad \ldots \times 2$
- $\frac{1}{3}$
- ${ }^{4} \quad 3$
- $\quad y-3=\frac{1}{3}(x-9)$ and complete to $y=\frac{1}{3} x$

Notes

1. \bullet^{3} is only available as a consequence of differentiating equation of the curve.
2. Candidates must arrive at the equation of the tangent via the point $(9,3)$ and not the origin.
3. For \bullet^{3} accept $9^{-\frac{1}{2}}$.

Regularly occurring responses

Response 1

Candidates who equate derivatives:
$\frac{1}{2}(2 x-9)^{-\frac{1}{2}} \times 2=\frac{1}{3} \quad \checkmark \bullet^{3}$
$\checkmark \bullet^{1} \quad \checkmark \bullet^{2}$
leading to $x=9$ and $y=3$ from curve $\checkmark \bullet^{4}$
Also obtaining $y=3$ from line and so line is a tangent

```
5 marks out of 5
```


Response 2

Candidates who intersect curve and line:

$$
\begin{array}{rlr}
(2 x-9)^{\frac{1}{2}} & =\frac{1}{3} x \quad \checkmark \bullet{ }^{1} \\
2 x-9 & =\left(\frac{1}{3} x\right)^{2} \checkmark \bullet \bullet^{2} \quad 5 \text { marks out of } 5 \\
\frac{1}{9} x^{2}-2 x+9 & =0 \checkmark \bullet 3
\end{array}
$$

Factorising or using discriminant $\checkmark \bullet^{4}$
Equal roots or $b^{2}-4 a c=0$ so line is a tangent $\checkmark \bullet^{5}$
(b)
\bullet ic obtain coordinates of A $\quad \left\lvert\, \bullet^{6}\left(\frac{9}{2}, 0\right)\right.$

Notes

4. Accept $x=\frac{9}{2}, y=0$ where $y=0$ may appear from $(2 x-9)^{\frac{1}{2}}=0$.
5. For $\left(\frac{9}{2}, 0\right)$ without working \bullet^{6} is awarded, but from erroneous working \bullet^{6} is lost (see response below).

Regularly occurring responses

Response 1
$\sqrt{2 x-9}=0 \Rightarrow \sqrt{2 x}-3=0 \Rightarrow 2 x-9=0 \Rightarrow x=4 \cdot 5$

Here \bullet^{6} cannot be awarded due to the erroneous working.

6 (c) Calculate the shaded area shown in diagram 2.

Generic Scheme

Illustrative Scheme

6 (c)

Method 1 : Area of triangle - area under curve

- 7 ss strategy for finding shaded area
- 8 ss know to integrate $(2 x-9)^{\frac{1}{2}}$
- ${ }^{9}$ pd start integration
${ }^{10} \mathrm{pd}$ complete integration
- ${ }^{11}$ ic limits x_{A} and 9
${ }^{12} \mathrm{pd}$ substitute limits
- ${ }^{13}$ pd evaluate area and complete strategy

Method 2 : Area between line and curve
$\bullet^{7} \quad$ ss strategy for finding shaded area

- 8 ss know to integrate $(2 x-9)^{\frac{1}{2}}$
- 9 pd start integration
${ }^{10} \mathrm{pd}$ complete integration
- ${ }^{11}$ ic limits x_{A} and 9
- ${ }^{12}$ pd 'upper - lower' and substitute limits
- ${ }^{13}$ pd evaluate area and complete strategy

Method 1 : Area of triangle - area under curve
${ }^{7} \quad$ Shaded area $=$ Area of large $\Delta-$ Area under curve

- $8(2 x-9)^{\frac{1}{2}} d x$
-9 $\frac{(2 x-9)^{\frac{3}{2}}}{\frac{3}{2}}$
${ }^{10} \ldots \times \frac{1}{2}$
- $11 \frac{9}{2}$ and 9
- ${ }^{12} \frac{1}{3}(18-9)^{\frac{3}{2}}-0$
- ${ }^{13} \frac{27}{2}-9=\frac{9}{2}$ or $4 \frac{1}{2}$ or $4 \cdot 5$

Method 2 : Area between line and curve
$\bullet \quad$ Area of small $\Delta+$ area between line and curve
$\bullet \quad \int \ldots(2 x-9)^{\frac{1}{2}} d x$
-9 $\ldots \frac{(2 x-9)^{\frac{3}{2}}}{\frac{3}{2}}$
$\bullet^{10} \quad \ldots \times \frac{1}{2}$

- ${ }^{11} \frac{9}{2}$ and 9
- $^{12}\left(\frac{1}{6} \times 9^{2}-\frac{1}{3}(18-9)^{\frac{3}{2}}\right)-\left(\frac{1}{6} \times\left(\frac{9}{2}\right)^{2}-\frac{1}{3}(9-9)^{\frac{3}{2}}\right)$
- ${ }^{13} \frac{27}{8}+\frac{9}{8}=\frac{9}{2}$ or $4 \frac{1}{2}$ or $4 \cdot 5$

Notes

6. \bullet^{7} may not be obvious until the final line of working and may be implied by final answer or a diagram.
7. At \bullet^{11} the value of x_{A} must lie between 0 and 9 exclusively, however, \bullet^{12} and \bullet^{13} are only available if $4 \cdot 5 \leq x_{\mathrm{A}}<9$.
8. Full marks are available to candidates who integrate with respect to y.

You may find the following helpful in marking this question:
Area between curve and line from 45 to $9=\frac{9}{8}$
Area of $\Delta_{\text {SMALLER }}=\frac{27}{8}$

Area of $\Delta_{\text {LARGER }}=13 \cdot 5$ or $\frac{27}{2}$

Area under curve from 4.5 to $9=9$

7 (a) Given that $\log _{4} x=\mathrm{P}$, show that $\log _{16} x=\frac{1}{2} \mathrm{P}$.

Generic Scheme

Illustrative Scheme

(a)

- ${ }^{1}$ ss convert from log to exponential form - $\quad x=4^{\mathrm{P}}$
- ${ }^{2}$ ss know to and convert back to log form
- 3 pd process and complete
- ${ }^{2} \log _{16} x=\log _{16} 4^{\mathrm{P}}$
- ${ }^{3} \log _{16} x=\mathrm{P} \times \log _{16} 4$ and complete

Notes

1. No marks are available to candidates who simply substitute in values and verify the result.

$$
\text { e.g. } \begin{aligned}
& \log _{4} 4=1 \text { and } \log _{16} 4=\frac{1}{2} \\
& \log _{4} x=\mathrm{P} \text { and } \log _{16} x=\frac{1}{2} \mathrm{P}
\end{aligned}
$$

Regularly occurring responses

Response 1
$\log _{4} x=\mathrm{P}$

$$
x=4^{\mathrm{P}} \quad \checkmark \bullet^{1}
$$

$$
\log _{16} x=\frac{1}{2} p \not \bullet \cdot{ }^{2}
$$

$$
x=16^{\frac{1}{2} \mathrm{P}}
$$

$$
=4^{\mathrm{P}}
$$

1 mark out of 3

Response 2

$$
\begin{aligned}
& \log _{4} x=P \\
& x=4^{P} \quad \bullet \bullet \\
& x^{2}=4^{2 P} \\
&=16^{P} \quad \bullet \bullet \\
& \log _{16} x^{2}=P \\
& 2 \log _{16} x=P \\
& \log _{16} x=\frac{1}{2} P \quad \bullet \bullet \\
& \hline 2 \text { marks out of } 3
\end{aligned}
$$

Response 3

$$
\begin{aligned}
x & =4^{\mathrm{P}} \checkmark \bullet^{1} \\
x & =\left(16^{\frac{1}{2}}\right)^{\mathrm{p}} \text { or } 16^{\frac{1}{2} \times \mathrm{P}} \checkmark \bullet^{2} \\
x & =16^{\frac{1}{2} \mathrm{P}} \\
\log _{16} x & =\frac{1}{2} \mathrm{P} \checkmark \bullet^{3} \quad \begin{array}{l}
\text { Without this step } \bullet^{2} \text { would } \\
\text { be lost but } \bullet^{3} \text { is still available } \\
\text { as follow through. }
\end{array}
\end{aligned}
$$

3 marks out of 3

Response 5

Beware that some candidates give a circular argument.
This is only worth $\bullet{ }^{1}$.

$$
\begin{aligned}
& \log _{4} x=\mathrm{P} \quad \text { then } \quad \log _{16} x=\frac{1}{2} \mathrm{P} \\
& x=4^{\mathrm{P}} \quad \checkmark \bullet 1 \quad x=16^{\frac{1}{2} \mathrm{P}} \\
& \log _{4} x=\log _{4} 4^{\mathrm{P}} \quad \log _{16} x=\log _{16} 16^{\frac{1}{2} \mathrm{P}} \\
& \log _{4} x=\mathrm{P} \log _{4} 4 \quad \log _{16} x=\frac{1}{2} \mathrm{P} \log _{16} 16 \\
& \log _{4} x=\mathrm{P} \quad \log _{16} x=\frac{1}{2} \mathrm{P} \quad \forall
\end{aligned}
$$

1 mark out of 3

Response 6
$\log _{16} x=\frac{\log _{4} x}{\log _{4} 16}=\frac{\log _{4} x}{2}=\frac{1}{2} \mathrm{P}$

3 mark out of 3

Generic Scheme

Illustrative Scheme

(b)

- ${ }^{4}$ ss use appropriate strategy
- 5 pd start solving process
- pd complete process via log to expo form
- $\log _{3} x+\frac{1}{2} \log _{3} x=12$
- $\log _{3} x=8$
- $\quad x=3^{8} \quad(=6561)$
or
-4 $\mathrm{Q}+\frac{1}{2} \mathrm{Q}=12$
$\mathrm{Q}=8$
-5 $\quad \log _{3} x=8$
- $\quad x=3^{8} \quad(=6561)$
- $2 \log _{9} x+\log _{9} x=12$
-5 $\quad \log _{9} x=4$
- $\quad x=9^{4} \quad(=6561)$
or
-4 $\quad 2 \mathrm{Q}+\mathrm{Q}=12$
$\mathrm{Q}=4$
- ${ }^{5} \quad \log _{9} x=4$
- ${ }^{6} \quad x=9^{4} \quad(=6561)$

Notes

2. At \bullet^{4} any letter except x may be used in lieu of Q .
3. Candidates who use a trial and improvement technique by substituting values for x gain no marks.
4. The answer with no working gains no marks.

Regularly occurring responses

Response 3

$$
\begin{aligned}
& 2 \log _{9} x+\log _{9} x=12 \quad \checkmark \bullet^{4} \\
& \log _{9} x^{2}+\log _{9} x=12 \\
& \log _{9} x^{3}=12 \quad \checkmark \cdot{ }^{5} \\
& x^{3}=9^{12} \\
& x=\sqrt[3]{9^{12}} \\
& x=9^{4} \quad \checkmark \bullet^{6} \\
& x=3^{8} \\
&=6561 \\
& 3 \text { marks out of } 3
\end{aligned}
$$

Response 4

$$
\log _{3} x=8 \mathbb{N} \bullet^{4} \mathbb{N} \bullet 5
$$

Without justification, \bullet^{4} and

- ${ }^{5}$ are not available.

[^0]: 4 marks out of 5

