qu	Mk	code	cal	Source	ss	pd	ic	c	в	A	U1	U2	U3		2.01
2.01	8	C8, c9	cn	08507	3	4	1	8			8				
Find the coordinates of the turning points of the curve with equation $y=x^{3}-3 x^{2}-9 x+12$ and determine their nature.															

The primary method $\mathrm{m} . \mathrm{s}$ is based on the following generic $\mathrm{m} . \mathrm{s}$. This generic marking scheme may be used as an equivalence guide but only where a candidate does not use the primary method or any alternative method shown in detail in the marking scheme.		
- ${ }^{1}$	ss	know to differentiate
	pd	differentiate
.3	ss	set derivative to zero
- ${ }^{\text {- }}$	pd	factorise
	pd	solve for x
- 6	pd	evaluate y-coordinates
	ss	know to, and justify tu
		interpret result

Notes

1. The " $=0$ " (shown at \bullet^{3}) must occur at least once before ${ }^{5}$.
2. •4 is only available as a consequence of solving $\frac{d y}{d x}=0$.
3. The nature table must reflect previous working from \bullet^{4}.
4. For \bullet^{4}, accept $(x+1)(x-3)$.
5. The use of the 2 nd derivative is an acceptable strategy.
6. As shown in the Primary Method, $\left(\bullet^{5}\right.$ and $\left.\bullet^{6}\right)$ and $\left(\bullet^{7}\right.$ and $\left.\bullet^{8}\right)$ can be marked horizontally or vertically.
7. \bullet^{1}, \bullet^{2} and \bullet^{3} are the only marks available to candidates who solve

$$
3 x^{2}-6 x=9 .
$$

Notes cont

8. If \bullet^{7} is not awarded, \bullet^{8} is only available as follow-through if there is clear evidence of where the signs at the ${ }^{7}$ stage have been obtained.
9. For ${ }^{7}$ and \bullet^{8}

The completed nature table is worth 2 marks if correct.
If the labels " x " and/or " $\frac{d y}{d x}$ " are missing from an otherwise correct table
then award 1 mark.
If the labels " x " and/or " $\frac{d y}{d x}$ " are missing from a table where either \bullet^{7} or \bullet^{8} (vertically) would otherwise have been awarded, then award 0 marks.

Alternatives

This would be fairly common:
$\bullet \quad \sqrt{ } \quad \frac{d y}{d x}=\ldots(1$ term correct $)$
$\bullet 2 \quad \sqrt{ } \quad 3 x^{2}-6 x-9$
$\bullet^{3}, \bullet^{4} \quad \sqrt{ } \sqrt{ }(3 x-9)(x+1)=0$
or $(3 x+3)(x-3)=0$

Min. requirements of a nature table

x	\ldots	-1	\ldots		
$\frac{d y}{d x}$	+	0	-		
	\max				

Preferred nature table

qu		Mk	Code	cal	Source	ss	pd	ic	C	B	A	U1	U2	U3	$2 \cdot 02$
2.02	a	3	A4	cn	09011	1		2	3			3			
	b	3	C1	cn		2	1		3			3			

Functions f and g are given by $f(x)=3 x+1$ and $g(x)=x^{2}-2$.
(a) (i) Find $p(x)$ where $p(x)=f(g(x))$
(ii) Find $q(x)$ where $q(x)=g(f(x))$. 3
(b) \quad Solve $p^{\prime}(x)=q^{\prime}(x)$.
3

Primary Method: Give 1 mark for each •

-1	$f\left(x^{2}-2\right)$		s/iby ${ }^{\text {² }}$
. ${ }^{2}$	$3\left(x^{2}-2\right)+1$		
.3	$(3 x+1)^{2}-2$		
	. 4	. 5	
. 4	$3 x^{2}-5$	$9 x^{2}+6 x-1$	s/iby ${ }^{5}$
. 5	$6 x$	$18 x+6$ or equiv.	
. 6	$x=-\frac{1}{2}$		

Notes

1. In (a)

2 marks are available for finding either $f(g(x))$ or $g(f(x))$ and 1 mark for finding the other.
2. $\operatorname{In}(b)$
candidates who start by equating $p(x)$ and $q(x)$ and then differentiate may earn ${ }^{4}$ and ${ }^{6}$ only.

Common Errors	Alternative for \bullet^{1} to \bullet^{3} :
1	- $1 \quad f(g(x))=3 \times g(x)+1$
$p(x)$ and $q(x)$ switched round:	
$X \quad{ }^{1} \quad p(x)=g(3 x+1)$	- $\quad f(g(x))=3\left(x^{2}-2\right)+1$
$X \vee \cdot{ }^{2} \quad p(x)=(3 x+1)^{2}-2$	$\mathrm{g}(f(x))=(f(x))^{2}-2$
$X \vee \cdot 3 \quad q(x)=\ldots \ldots=3\left(x^{2}-2\right)+1$.3 $\mathrm{g}(f(x))=(3 x+1)^{2}-2$
2	
Candidates who find $f(f(x))$ and $g(g(x))$ can earn no marks in (a) but	
$X \vee$ • ${ }^{4} \quad 9 x+4$ and $x^{4}-4 x^{2}+2$	
$X \vee \cdot 5 \quad 9=4 x^{3}-8 x$	
$X X \quad 6 \quad$ not available	
3	
$X \quad .4 \quad 3 x^{2}-1$ and $9 x^{2}+6 x-1$	
$X \sqrt{ } \cdot 5 \quad 6 x$ and $18 x+6$	
$X \sqrt{ } \cdot 6 \quad x=-\frac{1}{2}$	

qu		Mk	Code	cal	Source	ss	pd	ic	C	B	A	U1	U2	U3	2.03
2.03	a	4	A21	cn	09008	1	1	2	4				4		
	b	5	A32	cn		2	1	2		5				5	

(a) (i) Show that $x=1$ is a root of $x^{3}+8 x^{2}+11 x-20=0$.
(ii) Hence factorise $x^{3}+8 x^{2}+11 x-20$ fully. 4
(b) Solve $\log _{2}(x+3)+\log _{2}\left(x^{2}+5 x-4\right)=3$. 5


```
Primary Method: Give 1 mark for each •
    \(f(1)=1+8+11-20=0\) so \(x=1\) is a root See Note 1
    \((x-1)\left(x^{2} \ldots \ldots ..\right)\)
    \(\left(x^{2}+9 x+20\right)\)
    \((x-1)(x+4)(x+5) \quad\) Stated explicitly
. \({ }^{5} \quad \log _{2}\left((x+3)\left(x^{2}+5 x-4\right)\right) \quad\) s/iby. \({ }^{6}\)
\(6 \quad(x+3)\left(x^{2}+5 x-4\right)=2^{3}\)
- \(7 \quad x^{3}+8 x^{2}+11 x-20=0\)
- \(\quad x=1\) or \(x=-4\) or \(x=-5\) Stated explicitly here
- \({ }^{9} \quad x=1\) only
```


Notes

1. For candidates evaluating the function, some acknowledgement of the resulting zero must be shown in order to gain •
2. For candidates using synthetic division (shown in Alt. box), some acknowledgement of the resulting zero must be shown in order to gain \bullet^{2}.
3. In option 2 the "zero" has been highlighted by underlining. This can also appear in colour, bold or boxed.
Some acknowledgement of the resulting zero must be shown in order to gain \bullet^{1} as indicated in each option.

Higher Mathematics 2009 v10

qu		Mk	Code	Cal	Source	ss	pd	ic	C	B	A	U1	U2	U3	2.04
2.04	a	1	A6	cn	08026		1		1			1			
	b	5	G11	cn		2		3	5				5		
	c	4	G15	nc		1	1	2			4		4		

(a) Show that the point $\mathrm{P}(5,10)$ lies on circle C_{1} with equation $(x+1)^{2}+(y-2)^{2}=100$.
(b) PQ is a diameter of this circle as shown in the diagram.

Find the equation of the tangent at Q .
(c) Two circles, C_{2} and C_{3}, touch circle C_{1} at Q .

The radius of each of these circles is twice the radius of circle C_{1}.
Find the equations of circles C_{2} and C_{3}.

Notes

1. In (a), candidates may choose to show that distance $\mathrm{CP}=$ the radius. Markers should note that evidence for \bullet^{2}, which is in (b), may appear in (a).
2. The minimum requirement for ${ }^{1}$ is as shown in the Primary Method.
3. ${ }^{6}$ is only available as a conseqence of attempting to find a perp. gradient.
4. For candidates who choose a Q ex nihilo, ${ }^{6}$ is only available if the chosen Q lies in the 3 rd quadrant.

Notes cont

5. ${ }^{9}$ and/or ${ }^{10}$ are only available as follow-through if a centre with numerical coordinates has been stated explicitly.
6. ${ }^{10}$ is not available as a followthrough; it must be correct.

Alternative for $\cdot^{8},{ }^{9}$ and \bullet^{10}

- $8 \quad$ centre $=(-19,-22) \quad \mathbf{s} / \mathrm{iby} .{ }^{9}$
- ${ }^{9}(x+19)^{2}+(y+22)^{2}=400$
- ${ }^{10}(x-5)^{2}+(y-10)^{2}=400$

qu		Mk	Code	Cal	Source	ss	pd	ic	C	B	A	U1	U2	U3	2.05
2.05	a	1	T4	cn	09026			1	1			1			
	b	5	T6	cr		1	3	1	5				5		
	c	6	C17,23	cr		1	3	2		6			6		

The graphs of $y=f(x)$ and $y=g(x)$ are shown in the diagram. $f(x)=-4 \cos (2 x)+3$ and $g(x)$ is of the form $g(x)=m \cos (n x)$.
(a) Write down the values of m and n.
(b) Find, correct to 1 decimal place, the coordinates of the points of intersection of the two graphs in the interval shown.
(c) Calculate the shaded area.

The primary method $\mathrm{m} . \mathrm{s}$ is based on the following generic $\mathrm{m} . \mathrm{s}$.		
This generic marking scheme may be used as an equivalence guide		
but only where a candidate does not use the primary method or any		
alternative method shown in detail in the marking scheme.		
\bullet^{1}	ic	interprets graph
\bullet^{2}	ss	knows how to find intersection
\bullet^{3}	pd	starts to solve
\bullet^{4}	pd	finds x-coordinate in the 1st quadrant
\bullet^{5}	pd	finds x-coordinate in the 2nd quadrant
\bullet^{6}	pd	finds y-coordinates
\bullet^{7}	ss	knows how to find area
\bullet^{8}	ic	states limits
\bullet^{9}	pd	integrate
\bullet^{10}	pd	integrate
\bullet^{11}	ic	substitute limits
\bullet^{12}	pd	evaluate area

Primary Method: Give 1 mark for each •

- ${ }^{1} \quad m=3$ and $n=2$
- ${ }^{2} 3 \cos 2 x=-4 \cos 2 x+3$
- $3 \quad \cos 2 x=\frac{3}{7}$
- ${ }^{4} x=0.6$
. $5 \quad x=2.6$
- $6 \quad y=1.3,1.3$
.7 $\int(-4 \cos 2 x+3-3 \cos 2 x) d x$
- $8 \int_{0.6}^{2.6}$
- $9 \quad-7 \sin 2 x$ "
- ${ }^{10} 3 x-\frac{7}{2} \sin 2 x$
- ${ }^{11}\left(3 \times 2.6-\frac{7}{2} \sin 5.2\right)-\left(3 \times 0.6-\frac{7}{2} \sin 1.2\right)$
-12 12.4

Continued on next page
Continued on next page

Question 2.05 cont.

Notes 1

1. Answers which are not rounded should be treated as "bad form" and not penalised.
2. If $n=1$ from (a), then in (b) the followthrough solution is 0.697 and 5.586 .
.${ }^{5}$ is not available in (b)
and \bullet^{8} is not available in (c).
3. If $n=3$ from (a), then in (b) only \bullet^{2} is available.
4. $\mathrm{At}{ }^{5}$:
$x=2.5$ can only come from calculating
$\pi-0.6$. For this to be accepted, candidates must state that it comes from symmetry of the graph.
5. For ${ }^{6}$

Acceptable values of y will lie in the range 1.1 to 1.6
(due to early rounding !!)
6. Values of x used for the limits must lie between 0 and π,
i.e $0<$ limits $<\pi$, else $\cdot{ }^{8}$ is lost.
7. $\bullet^{8}, \bullet^{11}$ and \bullet^{12} are not available to candidates who use -3 and 7 as the limits.
8. Candidates must deal appropriately with any extraneous negative signs which may appear before \bullet^{12} can be awarded.
It is considered inappropriate to write \qquad = $=12.4=12.4$

Common Errors

1. For candidates who work in degrees throughout this question, the following marks are available:

In (b)		In (c)	
. ${ }^{2}$	\checkmark	. 7	\checkmark
. ${ }^{\text {a }}$	\checkmark	. 8	X
.4	X	. ${ }^{8}$	X
. 5	$X \vee$. ${ }^{10}$	$X \vee$
.6	\checkmark	.11	X
		. 12	X

2. In (c) candidates who deal with $f(x)$ and $g(x)$ separately and add can only earn at most
${ }^{8}$ correct limits

- 9 for correct integral of $f(x)$
${ }^{10}$ for correct integral of $\mathrm{g}(x)$
${ }^{11}$ for correct substitution.

Alternative for $\boldsymbol{0}^{3},{ }^{4}, \mathbf{}^{5}$

Option 1

- $\cos ^{2} x=\frac{10}{14}$
-4 $\cos x=\sqrt{\frac{10}{14}}, \quad \cos x=-\sqrt{\frac{10}{14}}$
. $5 x=0.6 \quad x=2.6$

Option 2

- $\cos ^{2} x=\frac{10}{14}$
- $\quad \cos x=\sqrt{\frac{10}{14}} \quad$ and $x=0.6$
. $5 \quad \cos x=-\sqrt{\frac{10}{14}}$ and $x=2.6$

Option 3

- $\sin ^{2} x=\frac{4}{14}$
. ${ }^{4} \quad \sin x=\sqrt{\frac{4}{14}}$
. $5 x=0.6, x=2.6$

Alternative for $\cdot{ }^{9},{ }^{10}$

- ${ }^{9}-4 \sin 2 x-3 \sin 2 x$
- $103 x-\frac{4}{2} \sin 2 x-\frac{3}{2} \sin 2 x$

qu		Mk	Code	cal	Source	ss	pd	ic	C	B	A	U1	U2	U3	2.06
2.06	a	2	A30, 34	Cr	08532		1	1		2				2	
	b	3	A30, 34	cr		1	1	1			3			3	

The size of the human population, N, can be modelled using the equation $N=N_{0} e^{r t}$ where N_{0} is the population in 2006, t is the time in years since 2006, and r is the annual rate of increase in the population.
(a) In 2006 the population of the United Kingdom was approximately 61 million, with an annual rate of increase of 1.6%. Assuming this growth rate remains constant, what would be the population in 2020 ?
(b) In 2006 the population of Scotland was approximately $5 \cdot 1$ million, with an annual rate of increase of 0.43%.

Assuming this growth rate remains constant, how long would it take for Scotland's population to double in size ?

The primary method m.s is based on the following generic m.s.
This generic marking scheme may be used as an equivalence guide but only where a candidate does not use the primary method or any
alternative method shown in detail in the marking scheme.

- ic substitute into equation
- ${ }^{2}$ pd evaluate exponential expression
. ${ }^{3}$ ic interpret info and substitute
${ }^{4}$ ss convert expo. equ. to log. equ.
. 5 pd process

Primary Method: Give 1 mark for each•

- ${ }^{1} \quad 61 e^{0.016 \times 14}$
. 276 million or equiv.
- ${ }^{3} \quad 10.2=5.1 e^{0.0043 t}$
- ${ }^{4} 0.0043 t=\ln 2$
. ${ }^{5} t=161.2$ years

Notes

1. For \bullet^{2}, do not accept 76 .

Accept any answer which rounds to 76 million and was obtained from legitimate sources.
2. ${ }^{5}$ is for a rounded up answer or implying a rounded-up answer. Acceptable answers would include 162 and 161.2 but not 161 .

3. Cave

Beware of poor imitations which yield results similar/same to that given in the paradigm, e.g.
compound percentage
or recurrence relations.
These can receive no credit but see Common Error 2 for exception.

Common Errors

1 Candidates who misread the rate of increase:
${ }^{1} \quad X \quad 61 e^{1.6 \times 14}$
. ${ }^{2} \quad X \sqrt{ } \quad 3.26 \times 10^{11}$ million

- ${ }^{3} \quad X \sqrt{ } \quad 10.2=5.1 e^{0.43 t}$
. ${ }^{4} X \sqrt{ } \quad 0.43 t=\ln 2$
${ }^{5} \quad X \sqrt{ } \quad t=1.612$

2
${ }^{1} \quad X \quad 61 \times 1.016^{14}$

- ${ }^{2} X \quad 76$ million
${ }^{3} \quad X \quad 10.2=5.1 \times 1.0043^{t}$
. ${ }^{4} \quad X \sqrt{ } \quad t \ln 1.0043=\ln 2$
. ${ }^{5} X \sqrt{ } \quad t=162$
i.e. award 2 marks

Options

1
$61000000 e^{0.016 \times 14}$

- ${ }^{2} 76000000$

2

- $\quad(61$ million $) \times e^{0.016 \times 14}$
- ${ }^{2} 76$ million

3
-1 $61000000 e^{0.224}$

- ${ }^{2} 76$ million

4

- ${ }^{1}(61$ million $) \times e^{0.224}$
. 276000000

Higher Mathematics 2009 v10

qu		Mk	Code	cal	Source	ss	pd	ic	C	B	A	U1	U2	U3	2.07
2.07	a	6	G29,26	cn	09031	1	2	3		6				6	
	b	4	G21,30	Cr		1	1	2		2	2			4	

Primary Method: Give 1 mark for each •

. ${ }^{1} \quad p . q+p . r$
s/iby ($\cdot{ }^{2}$ and $\cdot{ }^{4}$)

- ${ }^{2} \quad 4 \times 3 \cos 30^{\circ}$
s/iby ${ }^{3}$
. $3 \quad 6 \sqrt{3}$
-4 $\quad \boldsymbol{p} . \boldsymbol{r}=0$
explicitly stated
. $5 \quad-|r| \times 3 \cos 120^{\circ}$
- $6 \quad r=\frac{3}{2}$ and $\ldots \frac{9}{4}$
- $\boldsymbol{q} \boldsymbol{q}+\boldsymbol{r} \equiv$ from D to the projection of A onto DC
- $8 \quad|\boldsymbol{q}+\boldsymbol{r}|=\frac{3 \sqrt{3}}{2}$
- ${ }^{9} \quad \boldsymbol{p}-\boldsymbol{q} \equiv \overrightarrow{A C}$
- ${ }^{10}|\boldsymbol{p}-\boldsymbol{q}|=\sqrt{\left(4-\frac{3 \sqrt{3}}{2}\right)^{2}+\left(\frac{3}{2}\right)^{2}}$

Notes

1. $\boldsymbol{p} \cdot(\boldsymbol{q}+\boldsymbol{r})=p q+p r$ gains no marks unless the "vectors" are treated correctly further on. In this case treat this as bad form.
2. The evidence for \bullet^{7} and $\bullet{ }^{9}$ will likely appear in a diagram with the vectors $\boldsymbol{q}+\boldsymbol{r}$ and $\boldsymbol{p}-\boldsymbol{q}$ clearly marked.

Common Errors

1 For ${ }^{1}$ to ${ }^{4}$

$$
\begin{aligned}
p \cdot(\boldsymbol{q}+\boldsymbol{r}) & =\boldsymbol{p} . \boldsymbol{q}+\boldsymbol{p} . \boldsymbol{r} \\
& =4 \times 3+4 \times \frac{3}{2} \\
& =18
\end{aligned}
$$

can only be awarded \bullet^{1}.

Alternatives 1

1 For \bullet^{7} and \bullet^{8} :
${ }^{7} \sqrt{ } \sqrt{ } \boldsymbol{p} \cdot(\boldsymbol{q}+\boldsymbol{r})=|\boldsymbol{p}| \boldsymbol{q}+\boldsymbol{r} \mid \cos 0$

$$
6 \sqrt{3}=4|\boldsymbol{q}+\boldsymbol{r}| \times 1
$$

$.8 \sqrt{ }|q+r|=\frac{6 \sqrt{3}}{4}=\frac{3 \sqrt{3}}{2}$

2 For $\bullet^{9},{ }^{10}$:
Using right-angled $\triangle \mathrm{ABC}$

- ${ }^{9} \overrightarrow{A C}=\boldsymbol{p}-\boldsymbol{q}$, and $|\overrightarrow{A B}|=4-\frac{3 \sqrt{3}}{2},|\overrightarrow{B C}|=\frac{3}{2}$ and $A \widehat{C} B=43.06^{\circ}$
- ${ }^{10}$ use $\boldsymbol{r} \cdot(\boldsymbol{p}-\boldsymbol{q})=\frac{9}{4}$
to get $|\boldsymbol{p}-\boldsymbol{q}|=2.05$

Alternatives 2

3
For $\bullet^{7}, \bullet^{8}, \bullet^{9}, \bullet^{10}$:
Set up a coord system with origin at D

- ${ }^{7} C=(4,0), A=\left(\frac{3 \sqrt{3}}{2}, \frac{3}{2}\right), B=\left(4, \frac{3}{2}\right)$
- $\quad \boldsymbol{p}=\binom{4}{0}, \boldsymbol{q}=\binom{\frac{3 \sqrt{3}}{2}}{\frac{3}{2}}, \boldsymbol{r}=\binom{0}{-\frac{3}{2}}$
- $\quad \boldsymbol{q}+\boldsymbol{r}=\binom{\frac{3 \sqrt{3}}{2}}{0}$ and $|\boldsymbol{q}+\boldsymbol{r}|=2.60$
-10 $\boldsymbol{p}-\boldsymbol{q}=\binom{4-\frac{3 \sqrt{3}}{2}}{-\frac{3}{2}}$ and $|\boldsymbol{p}-\boldsymbol{q}|=2.05$

Higher Mathematics 2009 v10

Marks : May 2009

the end

