X100/12/03

\(\begin{array}{ll}NATIONAL \& WEDNESDAY, 22 \mathrm{MAY}
QUALIFICATIONS \& 2.50 PM-4.00 \mathrm{PM}\end{array} \quad\) MATHEMATICS 2013

Read carefully

1 Calculators may be used in this paper.
2 Full credit will be given only where the solution contains appropriate working.
3 Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$. The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Scalar Product:

$\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b}
or

$$
\text { a.b }=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } \mathbf{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } \mathbf{b}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) .
$$

Trigonometric formulae:

$$
\begin{aligned}
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B \\
\sin 2 A & =2 \sin A \cos A \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A
\end{aligned}
$$

Table of standard derivatives:

$f(x)$	$f^{\prime}(x)$
$\sin a x$	$a \cos a x$
$\cos a x$	$-a \sin a x$

Table of standard integrals:

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+C$
$\cos a x$	$\frac{1}{a} \sin a x+C$

ALL questions should be attempted.

1. The first three terms of a sequence are 4,7 and 16 .

The sequence is generated by the recurrence relation

$$
u_{n+1}=m u_{n}+c, \text { with } u_{1}=4 .
$$

Find the values of m and c.
2. The diagram shows rectangle PQRS with $\mathrm{P}(7,2)$ and $\mathrm{Q}(5,6)$.

(a) Find the equation of QR.
(b) The line from P with the equation $x+3 y=13$ intersects QR at T .

Find the coordinates of T.
(c) Given that T is the midpoint of QR , find the coordinates of R and S .
3. (a) Given that $(x-1)$ is a factor of $x^{3}+3 x^{2}+x-5$, factorise this cubic fully.
(b) Show that the curve with equation

$$
y=x^{4}+4 x^{3}+2 x^{2}-20 x+3
$$

has only one stationary point.
Find the x-coordinate and determine the nature of this point.
4. The line with equation $y=2 x+3$ is a tangent to the curve with equation $y=x^{3}+3 x^{2}+2 x+3$ at $\mathrm{A}(0,3)$, as shown in the diagram.

The line meets the curve again at B.
Show that B is the point $(-3,-3)$ and find the area enclosed by the line and the curve.
5. Solve the equation

$$
\log _{5}(3-2 x)+\log _{5}(2+x)=1, \text { where } x \text { is a real number. }
$$

6. Given that $\int_{0}^{a} 5 \sin 3 x d x=\frac{10}{3}, \quad 0 \leq a<\pi$, calculate the value of a.
7. A manufacturer is asked to design an open-ended shelter, as shown, subject to the following conditions.

Condition 1

The frame of a shelter is to be made of rods of two different lengths:

- $\quad x$ metres for top and bottom edges;
- $\quad y$ metres for each sloping edge.

Condition 2

The frame is to be covered by a rectangular sheet of material.
The total area of the sheet is $24 \mathrm{~m}^{2}$.
(a) Show that the total length, L metres, of the rods used in a shelter is given by

$$
L=3 x+\frac{48}{x}
$$

(b) These rods cost $£ 8 \cdot 25$ per metre.

To minimise production costs, the total length of rods used for a frame should be as small as possible.
(i) Find the value of x for which L is a minimum.
(ii) Calculate the minimum cost of a frame.
8. Solve algebraically the equation

$$
\begin{equation*}
\sin 2 x=2 \cos ^{2} x \quad \text { for } 0 \leq x<2 \pi \tag{6}
\end{equation*}
$$

9. The concentration of the pesticide, Xpesto, in soil can be modelled by the equation

$$
P_{t}=P_{0} e^{-k t}
$$

where:

- $\quad P_{0}$ is the initial concentration;
- $\quad P_{t}$ is the concentration at time t;
- t is the time, in days, after the application of the pesticide.
(a) Once in the soil, the half-life of a pesticide is the time taken for its concentration to be reduced to one half of its initial value.

If the half-life of Xpesto is 25 days, find the value of k to 2 significant figures.
(b) Eighty days after the initial application, what is the percentage decrease in concentration of Xpesto?
[BLANK PAGE]
[BLANK PAGE]

