X100/12/03

NATIONAL
QUALIFICATIONS 2012
MONDAY, 21 MAY
$2.50 \mathrm{PM}-4.00 \mathrm{PM}$

MATHEMATICS HIGHER
Paper 2

Read Carefully

1 Calculators may be used in this paper.
2 Full credit will be given only where the solution contains appropriate working.
3 Answers obtained by readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$. The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Scalar Product:

$\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b}
or

$$
\text { a.b }=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \text { where } \mathbf{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \text { and } \mathbf{b}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right) .
$$

Trigonometric formulae:

$$
\begin{aligned}
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B \\
\sin 2 A & =2 \sin A \cos A \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A
\end{aligned}
$$

Table of standard derivatives:

$f(x)$	$f^{\prime}(x)$
$\sin a x$	$a \cos a x$
$\cos a x$	$-a \sin a x$

Table of standard integrals:

$f(x)$	$\int f(x) d x$
$\sin a x$	$-\frac{1}{a} \cos a x+C$
$\cos a x$	$\frac{1}{a} \sin a x+C$

1. Functions f and g are defined on the set of real numbers by

- $f(x)=x^{2}+3$
- $g(x)=x+4$.
(a) Find expressions for:
(i) $f(g(x))$;
(ii) $g(f(x))$.
(b) Show that $f(g(x))+g(f(x))=0$ has no real roots.

2. (a) Relative to a suitable set of coordinate axes, Diagram 1 shows the line $2 x-y+5=0$ intersecting the circle $x^{2}+y^{2}-6 x-2 y-30=0$ at the points P and Q .

Diagram 1
Find the coordinates of P and Q .
(b) Diagram 2 shows the circle from (a) and a second congruent circle, which also passes through P and Q .

Diagram 2

Determine the equation of this second circle.
3. A function f is defined on the domain $0 \leq x \leq 3$ by $f(x)=x^{3}-2 x^{2}-4 x+6$.

Determine the maximum and minimum values of f.
4. The diagram below shows the graph of a quartic $y=h(x)$, with stationary points at $x=0$ and $x=2$.

On separate diagrams sketch the graphs of:
(a) $y=h^{\prime}(x)$;
(b) $y=2-h^{\prime}(x)$.
5. A is the point $(3,-3,0), \mathrm{B}$ is $(2,-3,1)$ and C is $(4, k, 0)$.
(a) (i) Express $\overrightarrow{\mathrm{BA}}$ and $\overrightarrow{\mathrm{BC}}$ in component form.
(ii) Show that $\cos \hat{\mathrm{ABC}}=\frac{3}{\sqrt{2\left(k^{2}+6 k+14\right)}}$.
(b) If angle $\mathrm{ABC}=30^{\circ}$, find the possible values of k.
6. For $0<x<\frac{\pi}{2}$, sequences can be generated using the recurrence relation

$$
u_{n+1}=(\sin x) u_{n}+\cos 2 x, \text { with } u_{0}=1 .
$$

(a) Why do these sequences have a limit?
(b) The limit of one sequence generated by this recurrence relation is $\frac{1}{2} \sin x$. Find the value(s) of x.
7. The diagram shows the curves with equations $y=4^{x}$ and $y=3^{2-x}$.

The graphs intersect at the point T .
(a) Show that the x-coordinate of T can be written in the form $\frac{\log _{a} p}{\log _{a} q}$, for all $a>1$.
(b) Calculate the y-coordinate of T .
[BLANK PAGE]
[BLANK PAGE]
[BLANK PAGE]

