

2012 Mathematics

Higher

Finalised Marking Instructions

© Scottish Qualifications Authority 2012

The information in this publication may be reproduced to support SQA qualifications only on a non-commercial basis. If it is to be used for any other purposes written permission must be obtained from SQA's NQ Delivery: Exam Operations team.

Where the publication includes materials from sources other than SQA (secondary copyright), this material should only be reproduced for the purposes of examination or assessment. If it needs to be reproduced for any other purpose it is the centre's responsibility to obtain the necessary copyright clearance. SQA's NQ Delivery: Exam Operations team may be able to direct you to the secondary sources.

These Marking Instructions have been prepared by Examination Teams for use by SQA Appointed Markers when marking External Course Assessments. This publication must not be reproduced for commercial or trade purposes.

General Comments

These marking instructions are for use with the 2012 Higher Mathematics Examination.

For each question the marking instructions are in two sections, namely **Illustrative Scheme** and **Generic Scheme**. The **Illustrative Scheme** covers methods which are commonly seen throughout the marking. The **Generic Scheme** indicates the rationale for which each mark is awarded. In general markers should use the **Illustrative Scheme** and only use the **Generic Scheme** where a candidate has used a method not covered in the **Illustrative Scheme**.

All markers should apply the following general marking principles throughout their marking:

- 1 Marks must be assigned in accordance with these marking instructions. In principle, marks are awarded for what is correct, rather than deducted for what is wrong.
- 2 Award one mark for each •. There are no half marks.
- **3** The mark awarded for **each part** of a question should be entered in the **outer** right hand margin, opposite the end of the working concerned. The marks should correspond to those on the question paper and these marking instructions. Only the mark, **as a whole number**, should be written.

- 4 Where a candidate has not been awarded any marks for a question, or part of a question, 0 should be written in the right hand margin against their answer. It should not be left blank.
- **5** Every page of a candidate's script should be checked for working. Unless blank, every page which is devoid of a marking symbol should have a tick placed in the bottom right hand margin.
- 6 Where the solution to part of a question is fragmented and continues later in the script, the marks should be recorded at the end of the solution. This should be indicated with a down arrow (♥), in the margin, at the earlier stages.
- 7 Working subsequent to an error must be **followed through**, with possible full marks for the subsequent working, provided that the level of difficulty involved is approximately similar. Where, subsequent to an error, the working for a follow through mark has been eased, the follow through mark cannot be awarded.
- 8 As indicated on the front of the question paper, full credit should only be given where the solution contains appropriate working. Throughout this paper, unless specifically mentioned in the marking instructions, a correct answer with no working receives no credit.

9 Marking Symbols

No comments or words should be written on scripts. Please use the following and the symbols indicated on the welcome letter and from comment 6 on the previous page.

A tick should be used where a piece of working is correct and gains a mark. Markers must check through the whole of a response, ticking the work only where a mark is awarded.

At the point where an error occurs, the error should be underlined and a cross used to indicate where a mark has not been awarded. If no mark is lost the error should only be underlined, i.e. a cross is only used where a mark is not awarded.

A cross-tick should be used to indicate "correct" working where a mark is awarded as a result of **follow through** from an error.

A double cross-tick should be used to indicate correct working which is irrelevant or insufficient to score any marks. This should also be used for working which has been **eased**.

A tilde should be used to indicate a minor error which is not being penalised, e.g. **bad form**.

This should be used where a candidate is given the **benefit of the doubt**.

A roof should be used to show that something is missing, such as part of a solution or a crucial step in the working.

These will help markers to maintain consistency in their marking and will assist the examiners in the later stages of SQA procedures.

The examples below illustrate the use of the marking symbols .

•² X

3 X

•4 🔨

•5 🗡

 $3\sin x - 5\cos x$

 $k \sin x \cos a - \cos x \sin a \checkmark \bullet^{1}$ $k \cos a = 3, k \sin a = 5 \checkmark \bullet^{2}$

Example 2 A(4,4,0), B(2,2,6), C(2,2,0) $\overrightarrow{AB} = \mathbf{b} + \mathbf{a} = \begin{pmatrix} 6\\ 6\\ 6 \\ 6 \end{pmatrix} \times \mathbf{a}^{1}$ $\overrightarrow{AC} = \begin{pmatrix} 6\\ 6\\ 0 \end{pmatrix} \times \mathbf{a}^{2}$ (repeated error)

Example 4

Since the remainder is 0, x-4 must be a factor. $\checkmark \bullet^3$ $(x^2 - x - 2) \checkmark \bullet^4$ $(x-4)(x+1)(x-2) \checkmark \bullet^5$ x = 4 or x = -1 or $x = 2 \checkmark \bullet^6$

- 10 In general, as a consequence of an error perceived to be trivial, casual or insignificant, e.g. $6 \times 6 = 12$, candidates lose the opportunity of gaining a mark. But note example 4 in comment 9 and comment 11.
- **11** Where a transcription error (paper to script or within script) occurs, the candidate should be penalised, e.g.

12 Cross marking

Where a question results in two pairs of solutions, this technique should be applied, but only if indicated in the detailed marking instructions for the question.

Example: Point of intersection of line with curve

 Illustrative Scheme:
 • 5 x = 2, x = -4 Cross marked:
 • 5 x = 2, y = 5

 • 6 y = 5, y = -7 • 6 x = -4, y = -7

Markers should choose whichever method benefits the candidate, but **not** a combination of both.

13 In final answers, numerical values should be simplified as far as possible. Examples: $\frac{15}{12}$ must be simplified to $\frac{5}{4}$ or $1\frac{1}{4}$ $\frac{43}{1}$ must be simplified to 43 $\frac{15}{0\cdot3}$ must be simplified to 50 $\frac{\frac{4}{5}}{3}$ must be simplified to $\frac{4}{15}$ $\sqrt{64}$ must be simplified to 8 The square root of perfect squares up

to and including 100 must be known.

- 14 Regularly occurring responses (ROR) are shown in the marking instructions to help mark common and/or non-routine solutions. RORs may also be used as a guide in marking similar non-routine candidate responses.
- Unless specifically mentioned in the marking instructions, the following should not be penalised:
 Working subsequent to a correct answer;
 - Correct working in the wrong part of a question;
 - Legitimate variations in numerical answers, e.g. angles in degrees rounded to nearest degree;
 - Omission of units;
 - Bad form;
 - Repeated error within a question, but not between questions or papers.

- **16** In any 'Show that . . .' question, where the candidate has to arrive at a formula, the last mark of that part is not available as a follow through from a previous error.
- 17 All working should be carefully checked, even where a fundamental misunderstanding is apparent early in the candidate's response. Marks may still be available later in the question so reference must be made continually to the marking instructions. All working must be checked: the appearance of the correct answer does not necessarily indicate that the candidate has gained all the available marks.
- **18** In the **exceptional** circumstance where you are in doubt whether a mark should or should not be awarded, consult your Team Leader (TL).
- **19** Scored out working which **has not been replaced** should be marked where still legible. However, if the scored out working **has been replaced**, only the work which has not been scored out should be marked.
- **20** A valid approach, within Mathematical problem solving, is to try different strategies. Where this occurs, all working should be marked. The mark awarded to the candidate is from the **highest** scoring strategy. This is distinctly different from the candidate who gives two or more solutions to a question/part of a question, deliberately leaving all solutions, hoping to gain some benefit. All such contradictory responses should be marked and the **lowest** mark given.
- 21 It is of great importance that the utmost care should be exercised in totalling the marks.The recommended procedure is as follows:
 - Step 1 Manually calculate the total from the candidate's script.
 - Step 2 Check this total using the grid issued with these marking instructions.
 - Step 3 In EMC, enter the marks and obtain a total, which should now be compared to the manual total.

This procedure enables markers to identify and rectify any errors in data entry before submitting each candidate's marks.

- 22 The candidate's script for Paper 2 should be placed inside the script for Paper 1, and the candidate's total score (i.e. Paper 1 Section B + Paper 2) written in the space provided on the front cover of the script for Paper 1.
- **23** In cases of difficulty, covered neither in detail nor in principle in these instructions, markers should contact their TL in the first instance. A referral to the Principal Assessor (PA) should only be made in consultation with the TL. Further details of PA Referrals can be found in The General Marking Instructions.

Paper 1 Section A

	Question	Answer
	1	С
	2	D
	3	В
	4	В
	5	Α
	6	С
	7	Α
	8	С
	9	Α
	10	В
	11	D
	12	В
	13	D
	14	Α
	15	D
	16	С
	17	D
	18	В
	19	В
	20	Α
<u>Summary</u>	Α	5
	В	6
	С	4
	D	5

21 (a) (i) Show that (x-4) is a factor of $x^3 - 5x^2 + 2x + 8$.

- (ii) Factorise $x^3 5x^2 + 2x + 8$ fully.
- (iii) Solve $x^3 5x^2 + 2x + 8 = 0$.

6

21 (a) • ' ss know to use $x = 4$ • ' pd complete evaluation • ' $4 \left[\begin{array}{c} 1 & -5 & 2 & 8 \\ \frac{4}{4} & -4 & -8 \\ 1 & -1 & -2 & 0 \end{array} \right]$ • ' $4 \left[\begin{array}{c} 1 & -5 & 2 & 8 \\ \frac{4}{4} & -4 & -8 \\ 1 & -1 & -2 & 0 \end{array} \right]$ • ' ' remainder is zero so $(x - 4)$ is a factor' • ' $x^2 - x - 2$ stated, or implied by x^3 • ' $(x - 4)(x - 2)(x + 1)$ stated explicitly in any order • ' $(x - 4)(x - 2)(x + 1)$ state explicitly in any order • ' $(x - 4)(x - 2)(x + 1)$ state explicitly in any order • ' $(x - 4)(x - 2)(x + 1)$ state explicitly in any order • ' $(x - 4)(x - 2)(x + 1)$ state explicitly in any order • ' $(x - 4)(x - 2)(x + 1)$ state explicitly in any order • ' $(x - 4)(x - 2)(x + 1)$ state explicitly in any order • ' $(x - 4)(x - 2)(x + 1)$ state explicitly in any order • ' $(x - 4)(x - 2)(x + 1)$ state explicitly in any order •	_			Generic Scheme	Illustrative Scheme		
Method 1: Using synthetic division •' ss know to use $x = 4$ •' gd complete evaluation •' $4 \left\lfloor \frac{1}{-5}, \frac{5}{2}, \frac{8}{-1}, \frac{4}{-4}, \frac{-8}{-2}, \frac{-8}{-1}, \frac{-1}{-2}, \frac{-2}{0}, \frac{-2}{0}, \frac{-2}{3}, -2$	21	(a)					
• ss know to use $x = 4$ • $\frac{1}{2}$ pd complete evaluation • $\frac{1}{2}$ ic state conclusion • $\frac{1}{2}$ ic find quadratic factor • $\frac{1}{2}$ ic find quadratic factor • $\frac{1}{2}$ ic state completely • $\frac{1}{2}$ ic state solutions • $\frac{1}{2}$ ($x = 4$) ($x = 2$) ($x = 1$) is a factor' • $\frac{1}{2}$ ($x = 4$) ($x = 2$) ($x = 1$) is a factor' • $\frac{1}{2}$ ($x = 4$) ($x = 2$) ($x = 1$) is tated explicitly in any order • $\frac{1}{2}$ ($x = 4$) ($x = 2$) ($x = 1$) is a factor • $\frac{1}{2}$ ($x = 4$) ($x = 2$) ($x = 1$) is a factor • $\frac{1}{2}$ ($x = 4$) ($x = 2$) ($x = 1$) is a factor • $\frac{1}{2}$ ($x = 4$) ($x = 2$) ($x = 1$) is a factor • $\frac{1}{2}$ ($x = 4$) ($x = 2$) ($x = 1$) is a factor • $\frac{1}{2}$ ($x = 4$) ($x = 2$) ($x = 1$) is a factor • $\frac{1}{2}$ ($x = 4$) ($x = 2$) ($x = 1$) is not a factor inplied by e^3 • $\frac{1}{2}$ ($x = 4$) ($x = 2$) ($x = 1$) is not a factor'. 2. Communication at e^3 must be consistent with working at e^3 . 2. Communication at e^3 must be consistent with working at e^3 . 2. Communication at e^3 must be consistent with working at e^3 . 2. Communication e^3 ($x = 4$) is a factor' • $\frac{1}{2}$ ($4 = 0$ is ($x = 4$) is a factor' • $\frac{1}{2}$ ($4 = 0$ is ($x = 4$) is a factor' • $\frac{1}{2}$ ($4 = 0$ is ($x = 4$) is a factor' • $\frac{1}{2}$ ($4 = 0$ is ($x = 4$) is a factor' • $\frac{1}{2}$ ($4 = 0$ is ($x = 4$) is a factor' • $\frac{1}{2}$ ($x = 4$) is a factor', ($x = 4$) is a factor', ($x = 4$) is a root' • $\frac{1}{2}$ ($x = 4$) is a factor', ($x = 4$) is a factor', ($x = 4$) is a root' • $\frac{1}{2}$ ($x = 4$) is a factor', ($x = 4$) is a factor', ($x = 4$) is a root', ($x = 4$) is a root' • $\frac{1}{2}$ ($x = 2$) ($x = 1$) leading to ($x = 2$, $x = -1$ does not gain e^6 . 2. Candidate who attempt to solve the cubic equation subsequent to $x = -1, 2, 4$ and obtain different solutions, or no solutions, cannot gain e^6 .					Method 1 : Using synthetic division		
• ² pd complete evaluation • ² ic state conclusion • ³ ic find quadratic factor • ³ pd factorise completely • ⁴ ic state solutions • ⁴ ic state solutions • ³ 'remainder is zeros os $(x-4)$ is a factor' • ⁴ $x^2 - x - 2$ stated, or implied by • ⁵ • ⁵ $(x-4)(x-2)(x+1)$ stated explicitly in any order • ⁶ $-1, 2, 4$ Method 2: Using substitution and inspection • ⁶ know to use $x - 4$ • ⁷ $(x-4)(x^2-2)(x+1)$ stated explicitly in any order • ⁸ $(x-4)(x^2-2)(x+1)$ stated explicitly in any order • ⁹ $(x-4)(x-2)(x+1)$ stated explicitly in any order • ¹ $(x-4)(x-2)(x+1)$ is a factor' • 'f(4) = 0 so $(x-4)$ is a factor' • 'f(4) = 0 so $(x-4)$ is a factor' • 'since remainder is 0, it is a factor', ' $(x-4)$ is a root', ' $(x-4)$ is a root' • ' $(x-4)(x-2)(x+1)$ is a factor', ' $x-4$ is a root', ' $(x-4)$ is a root' • the word 'factor' only, with no link. 5. To rogain • ⁶ , 4, -1, 2 must appear together in (a). 6. $(x-4)(x-2)(x+1)$ leading to $x-2, x = -1$ does not gain • ⁶ . 7. $(x-2)(x+1)$ leading to $x-2, x = -1$ does not gain • ⁶		\bullet^1	SS	know to use $x = 4$	\bullet^{1} 4 1 -5 2 8		
• ² pd complete evaluation • ² ic state conclusion • ³ ic state conclusion • ⁴ ic find quadratic factor • ⁵ pd factorise completely • ⁶ ic state solutions • ⁷ (x-4)(x-2)(x+1) stated explicitly in any order • ⁸ (x-4)(x ² -2)(x+1) stated explicitly in any order • ⁸ (x-4)(x ² -2)(x+1) stated explicitly in any order • ⁸ (x-4)(x ² -2)(x+1) stated explicitly in any order • ⁸ (x-4)(x ² -2)(x+1) stated explicitly in any order • ⁹ (x-4) is a factor • ⁴ (x-4)(x ² -2)(x+1) stated explicitly in any order • ⁶ (x-4) is a factor • ⁴ (x-4)(x ² -2)(x+1) stated explicitly in any order • ⁶ (x-4) is a factor • ⁶ (x-4) is a factor • ⁶ (x-4) is a factor • ⁷ (x-4) is a factor • ⁸ (x-4)(x-2)(x+1) stated explicitly in any order • ⁸ -1, 2, 4 Notes Not							
 pd complete evaluation pd complete evaluation ic state conclusion i ic find quadratic factor j pd factorise completely i c state solutions i s solutions i solutions i s solutions i solutions i s solutions		- ²	- a d				
• ³ ic state conclusion • ¹ ic find quadratic factor • ⁵ pd factorise completely • ⁶ ic state solutions • ¹ ic state solutions • ¹ $x^2 - x - 2$ stated, or implied by • ² • ⁵ $(x - 4)(x - 2)(x + 1)$ stated explicitly in any order • ⁶ $-1, 2, 4$ Method 2: Using substitution and inspection • ¹ know to use $x = 4$ • ⁶ $-1, 2, 4$ Method 2: Using substitution and inspection • ¹ $(x - 4)(x - 2)(x + 1)$ stated explicitly in any order • ⁶ $-1, 2, 4$ Method 2: Using substitution and inspection • ¹ $(x - 4)(x - 2)(x + 1)$ stated explicitly in any order • ⁶ $-1, 2, 4$ Notes Notes Notes Notes Notes • or oblue underlining the zero or backing in the zero, without a comment • $(x - 4)$ is not a factor'. • $(x - 4)(x - 2)(x + 1)$ is a factor' • $(x - 4)(x - 2)(x + 1)$ is a root' • $(x - 4)(x - 2)(x + 1)$ is a root', $(x - 4)$ is a root', $(x - 4)$ is a root', $(x - 4)$ is a root' • $(x - 4)(x - 2)(x + 1)$ is a factor' • $(x - 4)(x - 2)(x + 1)$ is a factor' • $(x - 4)(x - 2)(x + 1)$ is a factor', $(x - 4)$ is a root', $(x - 4)$ is a root' • $(x - 4)(x - 2)(x + 1)$ is a factor', $(x - 4)$ is a root', $(x - 4)$ is a root' • $(x - 2)(x + 1)$ leading to $(x - 0)$ and $(-1, 0)$ only does not gain \bullet^4 . • $(x - 2)(x + 1)$ only, leading to $x - 2, x = -1$ does not gain \bullet^4 as equation solved is not a cubic. 8. Candidates who attempt to solve the cubic equation subsequent to $x = -1, 2, 4$ and obtain different solutions, or no solutions, cannot gain \bullet^6 .		•	pa	complete evaluation	\bullet 4 1 -5 2 8 4 -4 -8		
 *³ ic state conclusion *⁴ ic find quadratic factor *⁵ pd factorise completely *⁶ ic state solutions *⁶ ic state solutions *⁶ (x-4)(x-2)(x+1) stated explicitly in any order *⁷ (x-4)(x-2)(x+1) stated explicitly in any order *⁸ (x-4)(x-2)(x+1) stated explicitly in any order *⁹ (x-4)(x-2)(x+1) state explicitly in any order *⁹ (x-4)(x-2)(x+1) state explicitly in any order *⁹ (x-4)(x-2)(x+1) state expl					1 -1 -2 0		
 *⁴ ic find quadratic factor ⁵ pd factorise completely *⁶ ic state solutions *⁶ (x-4)(x-2)(x+1) stated explicitly in any order *⁶ -1, 2, 4 *⁶ -1, 2, 4 Method 2: Using substitution and inspection *⁶ know to use x = 4 *⁷ 64-80+88+8=0 *⁹ (x-4)(x-2)(x+1) stated explicitly in any order *⁶ (x-4)(x-2)(x+1) stated explicitly in any order *⁶ (x-4)(x-2)(x+1) stated explicitly in any order *⁶ -1, 2, 4 Motos 1. *³ is only available as a consequence of the evidence for *¹ and *². 2. Communication at *³ must be consistent with working at *³. i.e. candidate's working must arrive legitimately at zero before *³ is awarded. If the remainder is not 0 then an appropriate statement would be '(x-4) is not a factor'. 3. Accept any of the following for *³: * 'f(4) = 0 so (x-4) is a factor' * isonce remainder is 0, it is a factor' * isonce remainder is 0, it is a factor ' * is a factor', '(x+4) is a factor', 'x = 4 is a root', '(x-4) is a root' * the word 'factor' only, with no link. 5. To gain *⁶, 4, -1, 2 must appear together in (a). (x-4)(x-2)(x+1) ending to (4, 0), (2, 0) and (-1, 0) only does not gain *⁶. (x-2)(x+1) only, leading to x = 2, x = -1 does not gain *⁶ as equation solved is not a cubic. 8. Candidates who attempt to solve the cubic equation subsequent to x = -1, 2, 4 and obtain different solutions, or no solutions, cannot gain *⁶. 		• ³	ic	state conclusion	• ³ 'remainder is zero so $(x-4)$ is a factor'		
 *⁵ pd factorise completely *⁶ ic state solutions *⁶ (x-4)(x-2)(x+1) stated explicitly in any order *⁶ -1, 2, 4 Method 2: Using substitution and inspection *¹ know to use x = 4 *² 64-80+8+8=0 *³ (x-4)(x²-x-2) stated, or implied by e⁵ *⁶ (x-4)(x²-x-2) stated, or implied by e⁵ *⁶ (x-4)(x-2)(x+1) stated explicitly in any order *⁶ -1, 2, 4 Method 2: Using substitution and inspection *¹ know to use x = 4 *² 64-80+8+8=0 *³ (x-4)(x²-x-2) stated, or implied by e⁵ *⁶ (x-4)(x-2)(x+1) stated explicitly in any order *⁶ -1, 2, 4 Motes Notes *³ is only available as a consequence of the evidence for *¹ and *². Communication at *³ must be consistent with working at *². i.e. candidate's working must arrive legitimately at zero before *³ is awarded. If the remainder is not 0 then an appropriate statement would be '(x-4) is not a factor'. Accept any of the following for *³: 'f(4) = 0 so (x-4) is a factor' 'since remainder is 0, it is a factor' 'since remainder is 0, it is a factor' 'since remainder is 0, it is a factor' the 0 from table linked to word 'factor' by e.g. 'so', 'hence',, '→', '⇒'. Do not accept any of the following for *³: 'f(4) = 0 so (x-4) is a factor', 'x = 4 is a root', '(x-4) is a root' the word 'factor' only, with no link. To gain *⁶, 4, -1, 2 must appear together in (a). (x-4)(x-2)(x+1) leading to (4, 0), (2, 0) and (-1, 0) only does not gain *⁶. (x-2)(x+1) only, leading to x = 2, x = -1 does not gain *⁶ as equation solved is not a cubic. Candidates who attempt to solve the cubic equation subsequent to x = -1, 2, 4 and obtain different solutions, or no solutions, cannot gain *⁶.		\bullet^4	ic	find quadratic factor	• $x^2 - x - 2$ stated, or implied by • ⁵		
 •⁶ ic state solutions •⁶ -1, 2, 4 Method 2: Using substitution and inspection •¹ know to use x = 4 •² 64-80+8+8=0 •³ (x - 4) is a factor •⁴ (x - 4)(x² - x - 2) stated, or implied by •⁵ •⁵ (x - 4)(x - 2)(x + 1) stated explicitly in any order •⁶ -1, 2, 4 6 Notes Notes 1. • ³ is only available as a consequence of the evidence for • ¹ and • ² . 2. Communication at • ³ must be consistent with working at • ² . 2. Communication at • ³ must be consistent with working at • ² . 2. Communication at • ³ must be consistent with working at • ² . 3. Communication at • ³ must arrive legitimately at zero before • ³ is awarded. If the remainder is not 0 then an appropriate statement would be '(x - 4) is not a factor'. 3. Accept any of the following for • ³ : • 'f(4) = 0 so (x - 4) is a factor' • is not accept any of the following for •³: • if (4) = 0 so (x - 4) is a factor' the 0 from table linked to word 'factor' by e.g. 'so', 'hence', :', '→', '=>'. 4. Do not accept any of the following for •³: • a double underlining the zero or boxing in the zero, without a comment 'x = 4 is a factor', '(x + 4) is a factor', 'x = 4 is a root', '(x - 4) is a root' the word 'factor' only, with no link. 5. To gain •⁶, 4, -1, 2 must appear together in (a). 6. (x - 2)(x + 1) ending to (4, 0), (2, 0) and (-1, 0) only does not gain •⁶. 7. (x - 2)(x + 1) only, leading to x = 2, x = -1 does not gain •⁶ as equation solved is not a cubic. 8. Candidates who attempt to solve the cubic equation subsequent to x = -1, 2, 4 and obtain different solutions, or no solutions, cannot gain •⁶.		•5	pd	factorise completely	• ⁵ $(x-4)(x-2)(x+1)$ stated explicitly in any order		
Method 2: Using substitution and inspection• know to use $x = 4$ • Gata Solution (a)• know to use $x = 4$ • Gata Solution (a)• know to use $x = 4$ • Gata Solution (a)• (x-4) is a factor• (x-4) (x ² - x - 2)• (x-4) (x ² - x - 2)• (x-4) (x ² - x - 2)• (x-4) (x - 2)(x + 1)• (x-2) (x + 1)<		• ⁶	ic	state solutions	• ⁶ -1, 2, 4		
 e¹ know to use x = 4 e² 64-80+8+8=0 e³ (x-4) is a factor e⁴ (x-4)(x²-x-2) stated, or implied by e⁵ e⁵ (x-4)(x-2)(x+1) stated explicitly in any order e⁶ -1, 2, 4 6 Notes Notes 1. e ³ is only available as a consequence of the evidence for e ¹ and e ² . 2. Communication at e ³ must be consistent with working at e ² . i.e. candidate's working must arrive legitimately at zero before e ³ is awarded. If the remainder is not 0 then an appropriate statement would be '(x-4) is not a factor'. 3. Accept any of the following for e ³ : 'f(4) = 0 so (x-4) is a factor' 'since remainder is 0, it is a factor' the 0 from table linked to word 'factor' by e.g. 'so', 'hence',, '→', '⇒'. 4. Do not accept any of the following for e³: double underlining the zero or boxing in the zero, without a comment 'x = 4 is a factor', '(x+4) is a factor', 'x = 4 is a root', '(x-4) is a root' the word 'factor' only, with no link. To gain e⁶, 4, -1, 2 must appear together in (a). (x-4)(x-2)(x+1) leading to (4, 0), (2, 0) and (-1, 0) only does not gain e⁶. (x-2)(x+1) only, leading to x = 2, x = -1 does not gain e⁶ as equation solved is not a cubic. 					Method 2 : Using substitution and inspection		
 e² 64-80+8+8=0 e³ (x-4) is a factor e⁴ (x-4)(x²-x-2) stated, or implied by e³ e⁵ (x-4)(x-2)(x+1) stated explicitly in any order e⁶ -1, 2, 4 6 Notes Notes 1. e ³ is only available as a consequence of the evidence for e ¹ and e ² . 2. Communication at e ³ must be consistent with working at e ² . i.e. candidate's working must arrive legitimately at zero before e ³ is awarded. If the remainder is not 0 then an appropriate statement would be '(x-4) is not a factor'. 3. Accept any of the following for e ³ : 'f(4) = 0 so (x - 4) is a factor' 'since remainder is 0, it is a factor' the 0 from table linked to word 'factor' by e.g. 'so', 'hence'; ∴', '→', '⇒'. 4. Do not accept any of the following for e³: double underlining the zero or boxing in the zero, without a comment 'x = 4 is a factor', '(x + 4) is a factor', 'x = 4 is a root', '(x - 4) is a root' the word 'factor' only, with no link. To gain e⁶, 4, -1, 2 must appear together in (a). (x -4)(x - 2)(x + 1) leading to (4, 0), (2, 0) and (-1, 0) only does not gain e⁶. (x -2)(x + 1) only, leading to x = 2, x = -1 does not gain e⁶ as equation solved is not a cubic. 					• ¹ know to use $x = 4$		
 *³ (x-4) is a factor *⁴ (x-4)(x²-x-2) stated, or implied by *⁵ *⁵ (x-4)(x-2)(x+1) stated explicitly in any order *⁶ -1, 2, 4 *⁷ -1, 2, 4 *⁷ -1, 2, 4 *⁷ -1, 2, 4 *⁷ -1, 2, 4 *⁸ -1, 2, 4 *⁸ -1, 2, 4 *⁸ -1, 2, 4 *⁹ -1, 2, 4 					• ² $64 - 80 + 8 + 8 = 0$		
 4⁴ (x-4)(x²-x-2) stated, or implied by e³ ³ (x-4)(x-2)(x+1) stated explicitly in any order ⁶ -1, 2, 4 6 Notes 1. • ³ is only available as a consequence of the evidence for • ¹ and • ² . 2. Communication at • ³ must be consistent with working at • ² . i.e. candidate's working must arrive legitimately at zero before • ³ is awarded. If the remainder is not 0 then an appropriate statement would be '(x-4) is not a factor'. 3. Accept any of the following for • ³ : 'f(4) = 0 so (x-4) is a factor' 'since remainder is 0, it is a factor' the 0 from table linked to word 'factor' by e.g. 'so', 'hence',, '→', '⇒'. 4. Do not accept any of the following for •³: double underlining the zero or boxing in the zero, without a comment 'x = 4 is a factor', '(x+4) is a factor', 'x = 4 is a root', '(x-4) is a root' the word 'factor' only, with no link. To gain •⁶, 4, -1, 2 must appear together in (a). (x-2)(x+1) only, leading to (4, 0), (2, 0) and (-1, 0) only does not gain •⁶. (x-2)(x+1) only, leading to x = 2, x = -1 does not gain •⁶ as equation solved is not a cubic. 					• ³ $(x-4)$ is a factor		
 *° (x-4)(x-2)(x+1) stated explicitly in any order *° (x-2)(x+1) only, leading to x=2, x=-1 does not gain *° as equation solved is not a cubic. 					• $(x-4)(x^2-x-2)$ stated, or implied by • ⁵		
 •* -1, 2, 4 Notes 1. •³ is only available as a consequence of the evidence for •¹ and •². 2. Communication at •³ must be consistent with working at •². i.e. candidate's working must arrive legitimately at zero before •³ is awarded. If the remainder is not 0 then an appropriate statement would be '(x-4) is not a factor'. 3. Accept any of the following for •³: 'f(4)=0 so (x-4) is a factor' 'since remainder is 0, it is a factor' the 0 from table linked to word 'factor' by e.g. 'so', 'hence','', '→', '⇒'. 4. Do not accept any of the following for •³: double underlining the zero or boxing in the zero, without a comment 'x = 4 is a factor', '(x+4) is a factor', 'x = 4 is a root', '(x-4) is a root' the word 'factor' only, with no link. 5. To gain •⁶, 4, -1, 2 must appear together in (a). (x-4)(x-2)(x+1) leading to (4, 0), (2, 0) and (-1, 0) only does not gain •⁶. (x-2)(x+1) only, leading to x = 2, x = -1 does not gain •⁶ as equation solved is not a cubic. 8. Candidates who attempt to solve the cubic equation subsequent to x = -1, 2, 4 and obtain different solutions, or no solutions, cannot gain •⁶.					• $(x-4)(x-2)(x+1)$ stated explicitly in any order		
 Notes 1. •³ is only available as a consequence of the evidence for •¹ and •². 2. Communication at •³ must be consistent with working at •². 2. Communication at •³ must be consistent with working at •². 2. Communication at •³ must be consistent with working at •². 2. condidate's working must arrive legitimately at zero before •³ is awarded. If the remainder is not 0 then an appropriate statement would be '(x-4) is not a factor'. 3. Accept any of the following for •³: 'f(4) = 0 so (x-4) is a factor' since remainder is 0, it is a factor' the 0 from table linked to word 'factor' by e.g. 'so', 'hence', ∴, '→', '⇒'. 4. Do not accept any of the following for •³: double underlining the zero or boxing in the zero, without a comment 'x = 4 is a factor', '(x+4) is a factor', 'x = 4 is a root', '(x-4) is a root' the word 'factor' only, with no link. 5. To gain •⁶, 4, -1, 2 must appear together in (a). (x - 4)(x - 2)(x + 1) leading to (4, 0), (2, 0) and (-1, 0) only does not gain •⁶. (x - 2)(x + 1) only, leading to x = 2, x = -1 does not gain •⁶ as equation solved is not a cubic. 8. Candidates who attempt to solve the cubic equation subsequent to x = -1, 2, 4 and obtain different solutions, or no solutions, cannot gain •⁶.					● [•] −1, 2, 4 6		
 •³ is only available as a consequence of the evidence for •¹ and •². Communication at •³ must be consistent with working at •². i.e. candidate's working must arrive legitimately at zero before •³ is awarded.	No	tes					
 Communication at •³ must be consistent with working at •². i.e. candidate's working must arrive legitimately at zero before •³ is awarded. If the remainder is not 0 then an appropriate statement would be '(x-4) is not a factor'. Accept any of the following for •³: 'f(4) = 0 so (x-4) is a factor' 'since remainder is 0, it is a factor' the 0 from table linked to word 'factor' by e.g. 'so', 'hence', '', '→', '⇒'. Do not accept any of the following for •³: double underlining the zero or boxing in the zero, without a comment 'x = 4 is a factor', '(x+4) is a factor', 'x = 4 is a root', '(x-4) is a root' the word 'factor' only, with no link. To gain •⁶, 4, -1, 2 must appear together in (a). (x-4)(x-2)(x+1) leading to (4, 0), (2, 0) and (-1, 0) only does not gain •⁶. (x-2)(x+1) only, leading to x = 2, x = -1 does not gain •⁶ as equation solved is not a cubic. Candidates who attempt to solve the cubic equation subsequent to x = -1, 2, 4 and obtain different solutions, or no solutions, cannot gain •⁶. 	1.	\bullet^3 is	only a	vailable as a consequence of the evider	nce for \bullet^1 and \bullet^2 .		
 i.e. candidate's working must arrive legitimately at zero before •³ is awarded. If the remainder is not 0 then an appropriate statement would be '(x-4) is not a factor'. 3. Accept any of the following for •³: 'f(4)=0 so (x-4) is a factor' 'since remainder is 0, it is a factor' the 0 from table linked to word 'factor' by e.g. 'so', 'hence', '', '→', '⇒'. 4. Do not accept any of the following for •³: double underlining the zero or boxing in the zero, without a comment 'x=4 is a factor', '(x+4) is a factor', 'x=4 is a root', '(x-4) is a root' the word 'factor' only, with no link. 5. To gain •⁶, 4, -1, 2 must appear together in (a). (x-4)(x-2)(x+1) leading to (4, 0), (2, 0) and (-1, 0) only does not gain •⁶. (x-2)(x+1) only, leading to x=2, x=-1 does not gain •⁶ as equation solved is not a cubic. 8. Candidates who attempt to solve the cubic equation subsequent to x=-1, 2, 4 and obtain different solutions, or no solutions, cannot gain •⁶.	2.	. Communication at \bullet^3 must be consistent with working at \bullet^2 .					
 If the remainder is not 0 then an appropriate statement would be '(x-4) is not a factor'. Accept any of the following for •³: 'f(4) = 0 so (x-4) is a factor' 'since remainder is 0, it is a factor' the 0 from table linked to word 'factor' by e.g. 'so', 'hence','', '→', '⇒'. Do not accept any of the following for •³: double underlining the zero or boxing in the zero, without a comment 'x = 4 is a factor', '(x+4) is a factor', 'x = 4 is a root', '(x-4) is a root' the word 'factor' only, with no link. To gain •⁶, 4, -1, 2 must appear together in (a). (x-4)(x-2)(x+1) leading to (4, 0), (2, 0) and (-1, 0) only does not gain •⁶. (x-2)(x+1) only, leading to x = 2, x = -1 does not gain •⁶ as equation solved is not a cubic. Candidates who attempt to solve the cubic equation subsequent to x = -1, 2, 4 and obtain different solutions, or no solutions, cannot gain •⁶.		i.e. candidate's working must arrive legitimately at zero before \bullet^3 is awarded.					
 3. Accept any of the following for •³: 'f(4) = 0 so (x-4) is a factor' 'since remainder is 0, it is a factor' the 0 from table linked to word 'factor' by e.g. 'so', 'hence',, '→', '⇒'. 4. Do not accept any of the following for •³: double underlining the zero or boxing in the zero, without a comment 'x = 4 is a factor', '(x+4) is a factor', 'x = 4 is a root', '(x-4) is a root' the word 'factor' only, with no link. 5. To gain •⁶, 4, -1, 2 must appear together in (a). (x-4)(x-2)(x+1) leading to (4, 0), (2, 0) and (-1, 0) only does not gain •⁶. (x-2)(x+1) only, leading to x = 2, x = -1 does not gain •⁶ as equation solved is not a cubic. 8. Candidates who attempt to solve the cubic equation subsequent to x = -1, 2, 4 and obtain different solutions, or no solutions, cannot gain •⁶. 		If the remainder is not 0 then an appropriate statement would be ' $(x-4)$ is not a factor'.					
 'f(4) = 0 so (x-4) is a factor' 'since remainder is 0, it is a factor' the 0 from table linked to word 'factor' by e.g. 'so', 'hence','', '→', '⇒'. 4. Do not accept any of the following for •³: double underlining the zero or boxing in the zero, without a comment 'x = 4 is a factor', '(x+4) is a factor', 'x = 4 is a root', '(x-4) is a root' the word 'factor' only, with no link. 5. To gain •⁶, 4, -1, 2 must appear together in (a). (x-4)(x-2)(x+1) leading to (4, 0), (2, 0) and (-1, 0) only does not gain •⁶. (x-2)(x+1) only, leading to x = 2, x = -1 does not gain •⁶ as equation solved is not a cubic. 8. Candidates who attempt to solve the cubic equation subsequent to x = -1, 2, 4 and obtain different solutions, or no solutions, cannot gain •⁶. 	3.	3. Accept any of the following for \bullet^3 :					
 'since remainder is 0, it is a factor' the 0 from table linked to word 'factor' by e.g. 'so', 'hence', ∴, '→', '⇒'. 4. Do not accept any of the following for •³: double underlining the zero or boxing in the zero, without a comment 'x = 4 is a factor', '(x+4) is a factor', 'x = 4 is a root', '(x-4) is a root' the word 'factor' only, with no link. 5. To gain •⁶, 4, -1, 2 must appear together in (a). (x-4)(x-2)(x+1) leading to (4, 0), (2, 0) and (-1, 0) only does not gain •⁶. (x-2)(x+1) only, leading to x = 2, x = -1 does not gain •⁶ as equation solved is not a cubic. 8. Candidates who attempt to solve the cubic equation subsequent to x = -1, 2, 4 and obtain different solutions, or no solutions, cannot gain •⁶. 		• $f(4) = 0 \text{ so } (x-4) \text{ is a factor'}$					
 the 0 from table linked to word 'factor' by e.g. 'so', 'hence', ∴', '→', '⇒'. 4. Do not accept any of the following for •³: double underlining the zero or boxing in the zero, without a comment 'x = 4 is a factor', '(x+4) is a factor', 'x = 4 is a root', '(x-4) is a root' the word 'factor' only, with no link. 5. To gain •⁶, 4, -1, 2 must appear together in (a). (x-4)(x-2)(x+1) leading to (4, 0), (2, 0) and (-1, 0) only does not gain •⁶. (x-2)(x+1) only, leading to x = 2, x = -1 does not gain •⁶ as equation solved is not a cubic. 8. Candidates who attempt to solve the cubic equation subsequent to x = -1, 2, 4 and obtain different solutions, or no solutions, cannot gain •⁶. 		 'since remainder is 0, it is a factor' 					
 4. Do not accept any of the following for •³: double underlining the zero or boxing in the zero, without a comment 'x = 4 is a factor', '(x+4) is a factor', 'x = 4 is a root', '(x-4) is a root' the word 'factor' only, with no link. 5. To gain •⁶, 4, -1, 2 must appear together in (a). (x-4)(x-2)(x+1) leading to (4, 0), (2, 0) and (-1, 0) only does not gain •⁶. (x-2)(x+1) only, leading to x = 2, x = -1 does not gain •⁶ as equation solved is not a cubic. 8. Candidates who attempt to solve the cubic equation subsequent to x = -1, 2, 4 and obtain different solutions, or no solutions, cannot gain •⁶. 		• the 0 from table linked to word 'factor' by e.g. 'so', 'hence', \therefore , ' \rightarrow ', ' \Rightarrow '.					
 double underlining the zero or boxing in the zero, without a comment 'x=4 is a factor', '(x+4) is a factor', 'x=4 is a root', '(x-4) is a root' the word 'factor' only, with no link. 5. To gain •⁶, 4, -1, 2 must appear together in (a). (x-4)(x-2)(x+1) leading to (4, 0), (2, 0) and (-1, 0) only does not gain •⁶. (x-2)(x+1) only, leading to x=2, x = -1 does not gain •⁶ as equation solved is not a cubic. 8. Candidates who attempt to solve the cubic equation subsequent to x = -1, 2, 4 and obtain different solutions, or no solutions, cannot gain •⁶. 	4.	4. Do not accept any of the following for \bullet^3 :					
 'x = 4 is a factor', '(x+4) is a factor', 'x = 4 is a root', '(x-4) is a root' the word 'factor' only, with no link. To gain •⁶, 4, -1, 2 must appear together in (a). (x-4)(x-2)(x+1) leading to (4, 0), (2, 0) and (-1, 0) only does not gain •⁶. (x-2)(x+1) only, leading to x = 2, x = -1 does not gain •⁶ as equation solved is not a cubic. Candidates who attempt to solve the cubic equation subsequent to x = -1, 2, 4 and obtain different solutions, or no solutions, cannot gain •⁶. 		 double underlining the zero or boxing in the zero, without a comment 					
 the word 'factor' only, with no link. To gain •⁶, 4, -1, 2 must appear together in (a). (x-4)(x-2)(x+1) leading to (4, 0), (2, 0) and (-1, 0) only does not gain •⁶. (x-2)(x+1) only, leading to x = 2, x = -1 does not gain •⁶ as equation solved is not a cubic. Candidates who attempt to solve the cubic equation subsequent to x = -1, 2, 4 and obtain different solutions, or no solutions, cannot gain •⁶. 		• ' $x = 4$ is a factor', ' $(x+4)$ is a factor', ' $x = 4$ is a root', ' $(x-4)$ is a root'					
 To gain •°, 4, −1, 2 must appear together in (a). (x-4)(x-2)(x+1) leading to (4, 0), (2, 0) and (−1, 0) only does not gain •⁶. (x-2)(x+1) only, leading to x = 2, x = −1 does not gain •⁶ as equation solved is not a cubic. Candidates who attempt to solve the cubic equation subsequent to x = −1, 2, 4 and obtain different solutions, or no solutions, cannot gain •⁶. 		• the word 'factor' only , with no link.					
 (x-4)(x-2)(x+1) leading to (4, 0), (2, 0) and (-1, 0) only does not gain •°. (x-2)(x+1) only, leading to x = 2, x = -1 does not gain •⁶ as equation solved is not a cubic. Candidates who attempt to solve the cubic equation subsequent to x = -1, 2, 4 and obtain different solutions, or no solutions, cannot gain •⁶. 	5.	To gain \bullet° , 4, -1, 2 must appear together in (a).					
 7. (x-2)(x+1) only, leading to x = 2, x = −1 does not gain •^b as equation solved is not a cubic. 8. Candidates who attempt to solve the cubic equation subsequent to x = −1, 2, 4 and obtain different solutions, or no solutions, cannot gain •⁶. 	6.	(x - 4)	(x-2)	2)($x+1$) leading to (4, 0), (2, 0) and (-1, 0) only does not gain •".		
8. Candidates who attempt to solve the cubic equation subsequent to $x = -1, 2, 4$ and obtain different solutions, or no solutions, cannot gain \bullet^6 .	7.	$(x-2)(x+1)$ only, leading to $x = 2$, $x = -1$ does not gain \bullet^6 as equation solved is not a cubic.					
or no solutions, cannot gain \bullet^6 .	8.	3. Candidates who attempt to solve the cubic equation subsequent to $x = -1, 2, 4$ and obtain different solutions,					

22 (a) The expression $\cos x - \sqrt{3} \sin x$ can be written in the form $k \cos(x+a)$ where k > 0 and $0 \le a < 2\pi$. Calculate the values of *k* and *a*.

C	Calculat	the the values of k and a .						4
		Generic Schem	e		Illus	strative S	cheme	
22 (a)								
\bullet^1	SS	use compound angle	e formula	\bullet^1	$k\cos x\cos a - k\sin x$	sin a	stated explicitly	
• ²	ic	compare coefficients	5	• ²	$k \cos a = 1$ and $k \sin a$	$a = \sqrt{3}$	stated explicitly	
•3	pd	process k		• ³	2 (do not accept 🗸	4)		
\bullet^4	pd	process a	ļ	• ⁴	$\frac{\pi}{3}$ but must be cons	sistent wit	$h \bullet^2$	4
Notes								
1. Treat	$k\cos$	$x\cos a - \sin x \sin a$ as b	ad form only if	the e	quations at the \bullet^2 s	tage both o	contain k.	
2. 2 cos	$x\cos a$	$-2\sin x\sin a$ or $2(\cos x)$	$x\cos a - \sin x \sin x$	a) is	acceptable for \bullet^1 and	\bullet^3 .		
3. Acce	pt <i>k</i> co	sa = 1 and $-ksina = -$	$-\sqrt{3}$ for \bullet^2 .					
4. \bullet^2 is	not av	ailable for $k \cos x = 1$ a	nd $k \sin x = \sqrt{3}$,	how	ever, \bullet^4 is still available	lable.		
5. \bullet^4 is	only a	vailable for a single va	alue of <i>a</i> .					
6. Cand	idates	who work in degrees	and do not con-	vert	to radian measure ii	n (a) do no	t gain ●⁴.	
7. Cand	idates	may use any form of	the wave equati	on fo	or \bullet^1 , \bullet^2 and \bullet^3 , ho	wever, \bullet^4	is only available if	the
value	e of <i>a</i> is	interpreted for the fo	orm $k\cos(x+a)$.					
Regularly	<mark>y occu</mark> o 1 · M	rring responses	working					
Response	(Candidate A	working		Candidate B			
		^			~			
	2	$2\cos a = 1$	• ¹ X		cos a = 1	$\bullet^1 \mathbf{X}$		
	-2	$2\sin a = -\sqrt{3}$ \checkmark	• ² ✓		$\sin a = \sqrt{3}$	• ² X		
	ta	$an a = \frac{\sqrt{3}}{2}$	•3 🗸		$\tan a = \frac{\sqrt{3}}{1}$	• ³ X		
		$\frac{1}{\pi}$	•4 🗸		$a = \frac{\pi}{2}$	• ⁴ X		
		$a = \frac{\pi}{3}$			3		J	
		3 marks out of 4]		0 marks out	t of 4	Not consistent vertice at \bullet^2 .	with
Response	e 2 : Co	orrect expansion of kc	$\cos(x+a)$ and po	ssibl	e errors for \bullet^2 and	• ⁴]
Candi	idate (Candidat	e D		Candi	date E	
k cos a	<i>i</i> = 1		$k\cos a = \sqrt{1-2}$	<u>/</u> 3 ×	• ²	k cos a	=1	
k sin a	$x = \sqrt{3}$	✓ • ²	$k \sin a = 1$			k sin a	$=-\sqrt{3} \times \bullet^2$	
tan <i>a</i> =	$=\frac{1}{\sqrt{3}}$ so	$\mathbf{D} \ a = \frac{\pi}{6} \ \mathbf{X} \ \mathbf{\bullet}^4$	$\tan a = \frac{1}{\sqrt{3}}$	so ($l = \frac{\pi}{6} \checkmark \bullet^4$	tan <i>a</i> =	$-\sqrt{3}$ so $a = \frac{5\pi}{3} \checkmark \bullet^4$	
Response 3 : Labelling incorrect using $cos(A+B) = cos A cos B - sin A sin B$ from formula list								
Candi	date F		Candidate	e G		Candio	late H	
$k \cos A \cos A$	b s B - k	$\sin A \sin B \times \bullet^1$	$k\cos A\cos \theta$	s B − I	$k \sin A \sin B \times \bullet^1$	$k\cos A$	$\cos B - k \sin A \sin B$	X ● ¹
$k\cos a = 1$	$\cos a = 1 \qquad k \cos x = 1 \times \bullet^2 \qquad k \cos B = 1$							
$k \sin a = \sqrt{1}$	√3 ✓ •	2	$k\sin x = \sqrt{1}$	3		k sin B	$=\sqrt{3}$ \checkmark \bullet^2	
$\tan a = $	3 so a	$=\frac{\pi}{3}$ \checkmark \bullet^4	$\tan x = \sqrt{3}$	so x	$c = \frac{\pi}{3} \checkmark \bullet^4$	tan B =	$=\sqrt{3}$ so B $=\frac{\pi}{3}$ $\checkmark \bullet^4$	

22 (b) Find the points of intersection of the graph of $y = \cos x - \sqrt{3} \sin x$ with the *x* and *y* axes, in the interval $0 \le x \le 2\pi$. **3**

Generic Scheme	Illustrative Scheme
22 (b)	
• ⁵ ic interpret <i>y</i> -intercept	• ⁵ 1
• ⁶ ss strategy for finding roots	• ⁶ e.g. $2\cos\left(x+\frac{\pi}{3}\right) = 0$ or $\sqrt{3}\sin x = \cos x$
• ⁷ ic state both roots	• ⁷ $\frac{\pi}{6}, \frac{7\pi}{6}$ 3
Notes	
8. Candidates should only be penalised once for lea	iving their answer in degrees in (a) and (b).
9. If the expression used in (b) is not consistent with	(a) then only \bullet' and \bullet' are available.
10. Correct roots without working cannot gain • bu	t will gain •.
Regularly occurring responses	t simplifying $\sqrt{4}$ in (a) and (b).
Response 4 : Communication for • ⁵ Candidate I	Candidate J
(1, 0) without working. $\times \bullet^5$	$\cos 0 - \sqrt{3} \sin 0 = 1 \checkmark \bullet^5$ so (1, 0).
Response 5 : Follow through from a wrong value of a	7
Candidate K	Candidate L
From (a) $a = \frac{\pi}{6}$ • ⁶ X	From (a) $a = 60^{\circ} \times \bullet^{4} \bullet^{6} \times$
then in (b) $x = \frac{\pi}{3}$, $\frac{4\pi}{3}$ only $\bullet^7 \checkmark$	then in (b) $x = 30^\circ$, 210° only • ⁷ \checkmark Note 10
Response 6 : Root or graphical approach $\begin{array}{c} \frac{\pi}{2} - \frac{\pi}{3} \text{ and } \frac{3\pi}{2} - \frac{\pi}{3} \checkmark \bullet^{6} \\ = \frac{\pi}{6} \text{ and } \frac{7\pi}{6} \checkmark \bullet^{7} \\ \end{array} \qquad (b) \qquad (c) \qquad (c$	date N $X \bullet^4$ g_0
Response 8 : Transcription error in (b)	However \bullet° and \bullet^{\prime} are still available as follow through See Note 9
Candidate Q	Tonow through. See Note 9.
(a) correct (b) $2\cos\left(x - \frac{\pi}{3}\right) = 0$ so $x = \frac{5\pi}{6}$, $\frac{11\pi}{6} \checkmark \bullet^7$ $y = 2\cos\left(0 - \frac{\pi}{3}\right) = 2\cos\left(-\frac{\pi}{3}\right) = 1 \checkmark \bullet^5$	

		Generic Scheme			Illusti	rative Scheme	2	
23 (a) • ¹ • ² • ³ • ⁴	ss ss ic ic	find midpoint of PQ find gradient of PQ interpret perpendicular state equation of perp.	r gradient bisector	• ¹ (1, 3) • ² -3 • ³ $\frac{1}{3}$ • ⁴ $y-3=\frac{1}{3}(x)$	-1)			4
Notes								
1. \bullet^4 is 2. Cand	only av	vailable if a midpoint an who use $y = mx + c$ mus	d a perpendi t obtain a nu	cular gradient a merical value fo	re used. or <i>c</i> before	• ⁴ is available.		
Response	\mathbf{y} occur	ndidates who use wron	a midpoint o	r no midpoint				
	Ca m m r y -	ndidate A idpoint M(2, -6) × $_{MQ} = -5$ × $_{\perp} = \frac{1}{5}$ × $-(-6) = \frac{1}{5}(x-2)$ ×	$\begin{array}{c} \mathbf{X} \bullet^{1} \\ \mathbf{x} \bullet^{2} \\ \mathbf{x} \bullet^{3} \\ \mathbf{x} \bullet^{4} \end{array}$	Candia $m_{\rm PQ} = -$ $m_{\perp} = \frac{1}{3}$ \sim using F	late B -3 \checkmark \checkmark x, y - (-2) =	$=\frac{1}{3}(x-1)$ X	$\begin{array}{c} \mathbf{X} \bullet^{1} \\ \mathbf{} \bullet^{2} \\ \mathbf{} \bullet^{3} \\ \mathbf{X} \bullet^{4} \end{array}$	
23 (b) Fin	nd the e	quation of ℓ_2 which is para	llel to PQ and	passes through I	R(1, -2).			2
		Generic Scheme			Illusti	rative Scheme	2	
23 (b) • ⁵ • ⁶	ic ic	use parallel gradients state equation of line		• ⁵ -3 • ⁶ $y - (-2) = -$	-3(x-1)	stated, or impli	ed by • ⁶	2
Notes	1			the increase director	(DO ((-)		
3. •° 1S	only av	railable to candidates wi	no use K and	their gradient o	of PQ from	(a).		
Regularl	y occur	ring responses						
Cand y-(-	$ -2 = \frac{1}{3}$	$(x-1) \times \begin{pmatrix} \bullet^5 \\ \bullet^6 \\ \bullet^6 \end{pmatrix}$	Candidate Parallel so so $m = \frac{1}{3} \times y - (-2) = \frac{1}{3}$	D same gradients $\frac{1}{3}(x-1)$	• ⁵ X • ⁶ \checkmark If m_{PQ} =	Candidate E $m = -3 \checkmark$ $y - (-2) = \frac{1}{3}(x)$ x = -3 only do not	$(-1) \times (-1) \times $	√ ×

23 (c) Find the point of intersection of ℓ_1 and ℓ_2 .

Generic Scheme	Illustrative Scheme			
23 (c) • ⁷ ss use valid approach	• ⁷ e.g. $x-3y = -8$ and $9x+3y = 3$ or $-3x+1 = \frac{1}{3}x + \frac{8}{3}$			
 ⁸ pd solve for one variable ⁹ pd solve for other variable 	or $3(3y-8) + y = 1$ • ⁸ e.g. $x = -\frac{1}{2}$ • ⁹ e.g. $y = \frac{5}{2}$ 3			
 Notes 4. Neither x-3y = -8 and 3x + y = 1 nor y = -3x + 1 and 3y = x + 8 are sufficient to gain •⁷. 5. •⁷, •⁸ and •⁹ are not available to candidates who: Equate zeros Give answers only, without working Use R for equations in both (a) and (b) Use the same gradient for the lines in (a) and (b). 				
23 (d) Hence find the shortest distance between PQ as	nd ℓ_2 . 2			
Generic Scheme	Illustrative Scheme			
 23 (d) •¹⁰ ss identify appropriate points •¹¹ pd calculate distance Notes	• ¹⁰ (1, 3) and $\left(-\frac{1}{2}, \frac{5}{2}\right)$ • ¹¹ $\sqrt{\frac{5}{2}}$ accept $\frac{\sqrt{10}}{2}$ or $\sqrt{2 \cdot 5}$			
 6. ●¹⁰ and ●¹¹ are only available for considering the distance between the midpoint of PQ and the candidate's answer from (c) or for considering the perpendicular distance from P or Q to ℓ₂. 				
 7. At least one coordinate at •¹⁰ stage must be a fraction for •¹¹ to be available. 8. There should only be one calculation of a distance to gain •¹¹. 				
Regularly occurring responses				
Response 3 : Following through from correct (a), (b) and (c) Candidate F (1, 3), $(1, -2) \times \bullet^{10}$ $d = 5 \times \bullet^{11}$				
Kesponse 4 : Following through from correct (a), (b) and (c) Candidate G (1, 3), $\left(-\frac{1}{2}, \frac{5}{2}\right) \checkmark \bullet^{10}$ PR = $\sqrt{5}$, QR= $\sqrt{125}$, d = $\sqrt{2 \cdot 5}$ so $\sqrt{2 \cdot 5}$ is shortest distance. $X \bullet^{11}$ If reference was made to this being the perpendicular distance then \bullet^{11} would be available.				

3