Mathematics
Higher Prelim Examination 2010/2011
Paper 2
Assessing Units 1 \& 2
Time allowed - $\mathbf{1}$ hour 10 minutes

Read carefully

1. Calculators may be used in this paper.
2. Full credit will be given only where the solution contains appropriate working.
3. Answers obtained from readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$.
The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Trigonometric formulae:

$$
\begin{aligned}
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B \\
\sin 2 A & =2 \sin A \cos A \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A
\end{aligned}
$$

ALL questions should be attempted

1. In the diagram below triangle $A B C$ has two of its vertices as $B(7,18)$ and $C(11,-2)$.

M is the mid-point of BC . The line AM crosses the y-axis at $(0,5)$.
BN is an altitude of the triangle.

(a) Find the equation of the median AM.
(b) Given that the equation of side AB is $y=x+11$, establish the coordinates of vertex A .
(c) Hence find the equation of the altitude BN.
2.
(a) If $x-1$ is a factor of $3 x^{3}+k x^{2}+4 x-13$, find the value of k.
(b) Hence find the x-coordinate of the single stationary point on the curve with equation $y=3 x^{3}+k x^{2}+4 x-13$ when k takes this value.
3. Two functions, defined on suitable domains, are given as

$$
f(x)=3 p x+\frac{1}{2} p \text { and } g(x)=x(3 p x-2), \text { where } p \text { is a constant. }
$$

(a) Show clearly that the composite function $f(g(x))$ can be written in the form $f(g(x))=a x^{2}+b x+c$, and write down the values of a, b and c in terms of p.
(b) Hence find the value of p, where $p>0$, such that the equation $f(g(x))=0$ has equal roots.
4. The diagram below, which is not drawn to scale, shows part of the curve with equation $y=x^{3}-11 x^{2}+28 x$ and the line $y=4 x$.

The line and the curve intersect at the origin and the point P .
The curve also crosses the x-axis at Q .

(a) Find the coordinates of P and Q . 5
(b) Calculate the shaded area in the diagram.
5. The circle, centre S , has as its equation $x^{2}+y^{2}+16 y+12=0$.
$\mathrm{T}(p,-12)$ is a point of tangency.

(a) Find the value of p, the x-coordinate of T.
(b) Write down the coordinates of S , the centre of the circle.
(c) Find the equation of the tangent through T and hence state the coordinates of R .
(d) Establish the equation of the circle which passes through the points S, T and R.
6. The cost of laying one mile of service piping to a wind farm is estimated by means of the formula

$$
C=\frac{16200}{9 a}+450 a
$$

where C is the cost in tens of pounds and a is the cross-sectional area of the tube in square inches.

What cross-sectional area is the most economical to use?

7. A formula is given as $E=\sin ^{2} \theta-\frac{1}{2} \sin \theta-1$ for $0 \leq \theta \leq \frac{\pi}{2}$.
(a) Express E in the form $E=(\sin \theta+p)^{2}+q$ and write down the values of p and q.
(b) Hence, or otherwise, state the minimum value of E and the corresponding replacement for θ. Give your answer correct to 2 decimal places.
8. A function, defined on a suitable domain, has as its derivative $f^{\prime}(x)=3 x^{2}-\frac{10}{x^{2}}$.
(a) Given that $f(2)=3$, find $f(x)$.
(b) Hence find $f(1)$.

