

DINGWALL ACADEMY

Mathematics Higher Prelim Examination 2009/2010 Paper 2 Assessing Units 1 & 2 NATIONAL QUALIFICATIONS

Time allowed - 1 hour 10 minutes

Read carefully

- 1. Calculators may be used in this paper.
- 2. Full credit will be given only where the solution contains appropriate working.
- 3. Answers obtained from readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle centre (-g, -f) and radius $\sqrt{g^2 + f^2 - c}$. The equation $(x-a)^2 + (y-b)^2 = r^2$ represents a circle centre (a, b) and radius r.

Trigonometric formulae:	$\sin(A\pm B) = \sin A\cos B \pm \cos A\sin B$
	$\cos(A\pm B) = \cos A\cos B \mp \sin A\sin B$
	$\sin 2A = 2\sin A\cos A$
	$\cos 2A = \cos^2 A - \sin^2 A$
	$= 2\cos^2 A - 1$
	$= 1 - 2\sin^2 A$

ALL questions should be attempted

1. Kite ABCD has two of its vertices at A(-3,8) and B(7,14) as shown.

(a)	(a) Given that the equation of the longer diagonal BD is $y = 4x - 14$, find the equation of the short diagonal AC expressing your answer in the	
	form $ax + by + c = 0$ and write down the values of a, b and c.	4
(b)	Find the coordinates of E, the point of intersection of the two diagonals.	3
(c)	Hence establish the coordinates of C.	2

2. Two functions are defined on suitable domains as
$$f(x) = 4x + 1$$
 and $g(x) = \frac{1}{x-1}$.

(a) If h(x) = f(g(x)), show clearly that h(x) can be written as

$$h(x) = \frac{x+3}{x-1}.$$

4

(b) Show that value of $h(\sqrt{5})$ can be expressed in the form $p + \sqrt{5}$ and write down the value of p.

3. A function is defined on the set of real numbers as $f(x) = 2x^3 + 3x^2 - 12x + 7$.

Part of the graph of y = f(x) is shown below.

(a)	Find the coordinates of the stationary points P and Q.	5
(b)	Calculate the shaded area in the diagram.	4

4. Solve algebraically the equation

$$2\sin^2 x = 1 - \sin x$$
 for $0 \le x \le 360$. 5

- 5. A recurrence relationship is such that $U_{n+1} = \frac{a}{4}U_n + 12$.
 - (a) If $U_0 = 16$ show clearly that $U_2 = a^2 + 3a + 12$. 2
 - (b) Hence find a if $U_2 = 30$ and a > 0. 3
 - (c) Explain why this sequence has a limit and find the limit. 3

6. An ice-cream manufacturer has decided on a new logo for her company.

It consists of a triangle and two circles representing a wafer cone and two balls of ice cream.

Placed on a set of rectangular axes the logo is modelled in the diagram below.

The triangle has coordinates P(-3, -6), Q(-4, 6) and R(8, 2).

A is the midpoint of QR.

(a)	Find the equation of PA	3
(b)	When PA is extended it intersects with the larger circle at B and C.	
	If the larger circle has as its equation $x^2 + y^2 - 10x - 20y + 105 = 0$, find the coordinates of C.	4
(c)	Given that C is the centre of the smaller circle and that its radius is exactly half of the larger circle, find the equation of the smaller circle.	3

A curve has as its equation $y = x^3 - kx^2 - 16x + 32$. 7.

Part of the graph of this curve is shown below.

The diagram is not drawn to scale.

(a)	If the curve crosses the x-axis at A(2,0), find k .	3
(b)	The point $B(p,35)$ also lies on this curve, find the value of p .	3
(c)	Calculate the size of the angle between the line AB and the <i>x</i> -axis in the positive direction. Give your answer to the nearest degree .	2

8. Given that
$$\int_{0}^{a} (2x) dx$$
 is equal to the **derivative** of $3a^{2} - 9a$, find a. 4

[END OF QUESTION PAPER]