

DINGWALL ACADEMY

Mathematics

Higher Prelim Examination 2009/2010

Paper 2

Assessing Units 1 \& 2

Time allowed - 1 hour 10 minutes

Read carefully

1. Calculators may be used in this paper.
2. Full credit will be given only where the solution contains appropriate working.
3. Answers obtained from readings from scale drawings will not receive any credit.

FORMULAE LIST

Circle:

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle centre $(-g,-f)$ and radius $\sqrt{g^{2}+f^{2}-c}$. The equation $(x-a)^{2}+(y-b)^{2}=r^{2}$ represents a circle centre (a, b) and radius r.

Trigonometric formulae:

$$
\begin{aligned}
\sin (A \pm B) & =\sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) & =\cos A \cos B \mp \sin A \sin B \\
\sin 2 A & =2 \sin A \cos A \\
\cos 2 A & =\cos ^{2} A-\sin ^{2} A \\
& =2 \cos ^{2} A-1 \\
& =1-2 \sin ^{2} A
\end{aligned}
$$

ALL questions should be attempted

1. Kite ABCD has two of its vertices at $\mathrm{A}(-3,8)$ and $\mathrm{B}(7,14)$ as shown.

(a) Given that the equation of the longer diagonal BD is $y=4 x-14$, find the equation of the short diagonal AC expressing your answer in the form $a x+b y+c=0$ and write down the values of a, b and c.
(b) Find the coordinates of E , the point of intersection of the two diagonals.
(c) Hence establish the coordinates of C.
2. Two functions are defined on suitable domains as $f(x)=4 x+1$ and $g(x)=\frac{1}{x-1}$.
(a) If $h(x)=f(g(x))$, show clearly that $h(x)$ can be written as

$$
h(x)=\frac{x+3}{x-1} .
$$

(b) Show that value of $h(\sqrt{5})$ can be expressed in the form $p+\sqrt{5}$ and write down the value of p.
3. A function is defined on the set of real numbers as $f(x)=2 x^{3}+3 x^{2}-12 x+7$.

Part of the graph of $y=f(x)$ is shown below.

$\begin{array}{ll}\text { (a) Find the coordinates of the stationary points P and Q. } & \mathbf{5} \\ \text { (b) Calculate the shaded area in the diagram. } & \mathbf{4}\end{array}$
4. Solve algebraically the equation

$$
2 \sin ^{2} x=1-\sin x \quad \text { for } \quad 0 \leq x \leq 360 .
$$

5. A recurrence relationship is such that $U_{n+1}=\frac{a}{4} U_{n}+12$.
(a) If $U_{0}=16$ show clearly that $U_{2}=a^{2}+3 a+12$.
(b) Hence find a if $U_{2}=30$ and $a>0$.
(c) Explain why this sequence has a limit and find the limit.
6. An ice-cream manufacturer has decided on a new logo for her company.

It consists of a triangle and two circles representing a wafer cone and two balls of ice cream.

Placed on a set of rectangular axes the logo is modelled in the diagram below.
The triangle has coordinates $\mathrm{P}(-3,-6), \mathrm{Q}(-4,6)$ and $\mathrm{R}(8,2)$.
A is the midpoint of QR .

(a) Find the equation of PA
(b) When PA is extended it intersects with the larger circle at B and C .

If the larger circle has as its equation $x^{2}+y^{2}-10 x-20 y+105=0$, find the coordinates of C .
(c) Given that C is the centre of the smaller circle and that its radius is exactly half of the larger circle, find the equation of the smaller circle.
7. A curve has as its equation $y=x^{3}-k x^{2}-16 x+32$.

Part of the graph of this curve is shown below.

The diagram is not drawn to scale.

(a) If the curve crosses the x-axis at $\mathrm{A}(2,0)$, find k.
(b) The point $\mathrm{B}(p, 35)$ also lies on this curve, find the value of p.
(c) Calculate the size of the angle between the line AB and the x-axis in the positive direction. Give your answer to the nearest degree.
8. Given that $\int_{0}^{a}(2 x) d x$ is equal to the derivative of $3 a^{2}-9 a$, find a.

