Higher Grade - Paper 1 2010/2011

ANSWERS - Section A

1	Α
2	D
3	В
4	С
5	С
6	Α
7	D
8	D
9	Α
10	С
11	Α
12	В
13	С
14	D
15	Α
16	С
17	D
18	D
19	В
20	В

	A	B	С	D
1	-			
2				
3		-		
4				
5			-	
6				
7				-
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				-
18				
19		-		
20				

Higher Grade Paper 1 2010/2011

Marking Scheme

	Give 1 mark for each •	Illustration(s) for awarding each mark
21(a)	ans: $p = -3$ (4 marks) • ¹ finds $\frac{dy}{dx}$ • ² knows to sub $x = -1$ • ³ equates $\frac{dy}{dx}$ to 0	• $\frac{dy}{dx} = 6x^2 + 2px - 12$ • $\frac{dy}{dx} = 6(-1)^2 + 2p(-1) - 12$ • $\frac{dy}{dx} = 6(-1)^2 - 12 = 0$
(b)	• ⁴ solves for p ans: B(2, -20) (4 marks) • ¹ equates $\frac{dy}{dt}$ to 0	• $p = -3$ • $\frac{dy}{dx} = 6x^2 - 6x - 12 = 0$
	• equates $\frac{dx}{dx}$ • factorises and solves for x • subs approp. value to find y-coordinate • states coordinates of B	• $dx = 0x = 0x = 12 = 0$ • $dx = 0x = 12 = 0$ • $(x - 2)(x + 1) = 0; x = 2, -1$ • $y = 2(2)^3 - 3(2)^2 - 12(2) = -20$ • $B(2, -20)$
(c)	ans: $y = -12x - 1$ (3 marks)•1subs into equation to find y-coord. of C•2subs into derivative to find gradient•3subs into straight line equation	• $y = 2(1)^3 - 3(1)^2 - 12(1) = -13 C(1, -13)$ • $6(1)^2 - 6(1) - 12 = -12$ • $y + 13 = -12(x - 1)$
22	ans: $\theta = \frac{2\pi}{3}$; $\theta = \frac{4\pi}{3}$ (6 marks)	
	 ¹ multiplies and brings terms to LHS ² factorises ³ solves for cos θ ⁴ finds solutions for 1 bracket ⁵ finds solution for second bracket Interprets domain 	• ¹ $2\cos^2 \theta - \cos \theta - 1 = 0$ • ² $(2\cos \theta + 1)(\cos \theta - 1)$ • ³ $\cos \theta = -\frac{1}{2}$ • ⁴ $\theta = \frac{2\pi}{3}, \frac{4\pi}{3}$ • ⁵ $\theta = 0, 2\pi$ $\theta = 0, 2$

	Give 1 mark for each •	Illustration(s) for awarding each mark
23(a)	ans: $a = \frac{1}{2}$ (2 ma	rks) $\bullet^1 38 = a \times 36 + 20$
	• substitutes values • ² solves for a	$\bullet^2 a = \frac{1}{2}$
(b)	ans: 40 (2 m	arks)
	\bullet^1 knows how to find limit	$\bullet^1 L = \frac{20}{\frac{1}{2}}$
	\bullet^2 answer	\bullet^2 40
(b)	ans: $k = 5$ (3 ma	arks)
	• knows to find U_0	• evidence of working backwards to U_0
	• Evaluates O_0 • ³ finds k	• $C_2 = 52, \ C_1 = 24, \ C_0 = 8,$ • $k = \frac{40}{2} = 5$
		8
24(a)	ans: proof (3 ma	arks)
	• ¹ finds length of BD	• ¹ BD = $\sqrt{8}$
	• ² finds expression for sin x.	$\bullet^2 \sin x = \frac{\sqrt{8}}{\sqrt{12}}$
	• ³ simplifies to answer	• ³ $\sin x = \frac{\sqrt{8}}{\sqrt{12}} = \frac{2\sqrt{2}}{2\sqrt{3}} = \frac{\sqrt{2}}{\sqrt{3}}$
(b)	ans: proof (3 m	arks)
	• ¹ knows to use cosine rule	• ¹ finds length BD = $4\sqrt{2}$
	• ² finds $\cos BAC$	• ² $\cos BAC = \frac{(\sqrt{12})^2 + (\sqrt{12})^2 - (4\sqrt{2})^2}{2x\sqrt{12}x\sqrt{12}}$
	\bullet^3 substitutes and simplifies to answer	• ³ $\cos BAC = -\frac{1}{3}$
© Peg	Jasys 2010	Total: 70 marks