Please make sure you have filled in all your details above before handing in this answer sheet.

Higher Grade - Paper 1 2010/2011
ANSWERS - Section A

| 1 | A |  | A | B | C | D |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | D | 1 | - | $\square$ | $\square$ | $\square$ |
| 3 | B | 2 | $\square$ | $\square$ | $\square$ | - |
| 4 | C | 3 | $\square$ | $\square$ | $\square$ | $\square$ |
| 5 | C | 4 | $\square$ | $\square$ | - | $\square$ |
| 6 | A | 5 | $\square$ | $\square$ | $\square$ | $\square$ |
| 7 | D | 6 | ■ | $\square$ | $\square$ | $\square$ |
| 8 | D | 7 | $\square$ | $\square$ | $\square$ | $\square$ |
|  |  | 8 | $\square$ | $\square$ | $\square$ | $\square$ |
| 9 | A | 9 | ■ | $\square$ | $\square$ | $\square$ |
| 10 | C | 10 | $\square$ | $\square$ | $\square$ | $\square$ |
| 11 | A | 11 | - | $\square$ | $\square$ | $\square$ |
| 12 | B | 12 | $\square$ | $\square$ | $\square$ | $\square$ |
| 13 | C | 13 | $\square$ | $\square$ | - | $\square$ |
| 14 | D | 14 | $\square$ | $\square$ | $\square$ | $\square$ |
| 15 | A | 15 | ■ | $\square$ | $\square$ | $\square$ |
| 16 | C | 16 | $\square$ | $\square$ | $\square$ | $\square$ |
| 17 | D | 17 | $\square$ | $\square$ | $\square$ | $\square$ |
| 18 | D | 18 | $\square$ | $\square$ | $\square$ | - |
| 19 | B | 19 | $\square$ | $\square$ | $\square$ | $\square$ |
|  |  | 20 | $\square$ | $\square$ | $\square$ | $\square$ |


|  | Give 1 mark for each - | Illustration(s) for awarding each mark |
| :---: | :---: | :---: |
| 21(a) <br> (b) <br> (c) | ans: $p=-3$ <br> (4 marks) <br> - ${ }^{1}$ finds $\frac{d y}{d x}$ <br> -2 knows to sub $x=-1$ <br> - 3 equates $\frac{d y}{d x}$ to 0 <br> - ${ }^{4} \quad$ solves for $p$ <br> ans: $\quad B(2,-20)$ <br> (4 marks) <br> - ${ }^{1}$ equates $\frac{d y}{d x}$ to 0 <br> - ${ }^{2}$ factorises and solves for $x$ <br> $\bullet^{3} \quad$ subs approp. value to find $y$-coordinate <br> - ${ }^{4}$ states coordinates of B <br> ans: $y=-12 x-1$ <br> (3 marks) <br> - ${ }^{1}$ subs into equation to find $y$-coord. of C <br> - ${ }^{2}$ subs into derivative to find gradient <br> $\bullet^{3}$ subs into straight line equation | - ${ }^{1} \frac{d y}{d x}=6 x^{2}+2 p x-12$ <br> - $\frac{d y}{d x}=6(-1)^{2}+2 p(-1)-12$ <br> - ${ }^{3} 6-2 p-12=0$ <br> - $4 \quad p=-3$ <br> - $\frac{d y}{d x}=6 x^{2}-6 x-12=0$ <br> - ${ }^{2} \quad 6(x-2)(x+1)=0 ; x=2,-1$ <br> - ${ }^{3} y=2(2)^{3}-3(2)^{2}-12(2)=-20$ <br> - ${ }^{4} \mathrm{~B}(2,-20)$ <br> - ${ }^{1} \quad y=2(1)^{3}-3(1)^{2}-12(1)=-13 \mathrm{C}(1,-13)$ <br> - ${ }^{2} 6(1)^{2}-6(1)-12=-12$ <br> -3 $y+13=-12(x-1)$ |
| 22 | ans: $\quad \theta=\frac{2 \pi}{3} ; \theta=\frac{4 \pi}{3}$ <br> (6 marks) <br> - ${ }^{1}$ multiplies and brings terms to LHS <br> - ${ }^{2}$ factorises <br> - 3 solves for $\cos \theta$ <br> - ${ }^{4}$ finds solutions for 1 bracket <br> $\bullet$ finds solution for second bracket <br> Interprets domain | - ${ }^{1} 2 \cos ^{2} \theta-\cos \theta-1=0$ <br> - ${ }^{2} \quad(2 \cos \theta+1)(\cos \theta-1)$ <br> - ${ }^{3} \cos \theta=-\frac{1}{2}$ <br> -4 $\quad \theta=\frac{2 \pi}{3}, \frac{4 \pi}{3}$ <br> - ${ }^{5} \quad \theta=0,2 \pi$ $\theta=0$ |


|  | Give 1 mark for each - | Illustration(s) for awarding each mark |
| :---: | :---: | :---: |
| 23(a) <br> (b) <br> (b) | ans: $\quad a=\frac{1}{2}$ <br> (2 marks) <br> - ${ }^{1}$ substitutes values <br> - ${ }^{2} \quad$ solves for $a$ <br> ans: 40 <br> (2 marks) <br> - ${ }^{1}$ knows how to find limit <br> - ${ }^{2}$ answer <br> ans: $k=5$ <br> (3 marks) <br> - ${ }^{1}$ knows to find $U_{0}$ <br> - ${ }^{2}$ evaluates $U_{0}$ <br> - $\quad$ finds $k$ | - $138=a \times 36+20$ <br> - $2 \quad a=\frac{1}{2}$ <br> - $\quad L=\frac{20}{\frac{1}{2}}$ <br> -2 40 <br> - ${ }^{1}$ evidence of working backwards to $U_{0}$ <br> $\bullet^{2} \quad U_{2}=32 ; U_{1}=24 ; U_{0}=8$; <br> - ${ }^{3} k=\frac{40}{8}=5$ |
| 24(a) <br> (b) | ans: proof <br> - ${ }^{1}$ finds length of $B D$ <br> - ${ }^{2}$ finds expression for $\sin \mathrm{x}$. <br> - ${ }^{3}$ simplifies to answer <br> ans: proof <br> (3 marks) <br> -1 knows to use cosine rule <br> - ${ }^{2}$ finds cos BAC <br> -3 substitutes and simplifies to answer | - ${ }^{1} \quad \mathrm{BD}=\sqrt{ } 8$ <br> - ${ }^{2} \quad \sin x=\frac{\sqrt{8}}{\sqrt{12}}$ <br> - $\quad \sin x=\frac{\sqrt{8}}{\sqrt{12}}=\frac{2 \sqrt{2}}{2 \sqrt{3}}=\frac{\sqrt{2}}{\sqrt{3}}$ <br> - ${ }^{1}$ finds length $\mathrm{BD}=4 \sqrt{ } 2$ <br> - $\quad \cos B A C=\frac{(\sqrt{12})^{2}+(\sqrt{12})^{2}-(4 \sqrt{2})^{2}}{2 x \sqrt{12} x \sqrt{12}}$ <br> - $\quad \cos B A C=-\frac{1}{3}$ |
| © Peqasys 2010 |  | Total: 70 marks |

